ӨМНӨД МОНГОЛЫН ДУНД ЮРЫН УУР АМЬСГАЛ, ГЕОДИНАМИКИЙН НӨХЦӨЛ. I ХЭСЭГ: НАРИЙНСУХАЙТ ОРДЫН ЭЛСЭН ЧУЛУУНЫ ГЕОХИМИЙН СУДАЛГАА

Authors

  • Байгалмаа Н. МУИС, Шинжлэх Ухааны Сургууль, Геологи, геофизикийн тэнхим
  • Эрдэнэчимэг Д. ШУА, Геологийн хүрээлэн
  • Эрдэнэцогт Б. МУИС, Шинжлэх Ухааны Сургууль, Геологи, геофизикийн тэнхим
  • Жаргал Л. МУИС, Шинжлэх Ухааны Сургууль, Геологи, геофизикийн тэнхим
  • Огата Т. Акита их сургууль, Акита, Япон
  • Эрдэнэбаяр Ж. Акита их сургууль, Акита, Япон
  • Баатархуяг А. МАК ХХК
  • Нансалмаа Д. МУИС, Шинжлэх Ухааны Сургууль, Геологи, геофизикийн тэнхим
  • Билгүүн Б. Фэстжампер ХХК

Keywords:

элсэн чулуу, тектоник, дунд юра, нүүрс, өмнөд Mонгол, форланд

Abstract

Middle and Upper Jurassic 18 sandstone core samples from exploration borehole, drilled in Nariinsukhait coal deposit, was studied. Geochemistry of samples indicates that sandstones were derived from acidic and intermediate rocks and mixed with recycled older sedimentary rocks. Possible sources are volcano-sedimentary rocks of Mississippian Tost Formation, granite and granodiorite of Early-Late Carboniferous Tavan-Uul complex and sedimentary rocks of Middle-
Upper Triassic Noyon Formation. Paleoclimate indices (C-value, Rb/Sr, Sr/Ba, 1000xRb/K2O and CIA) reflect that coal seams were accumulated in warmer and more humid climate, when paleo-weathering was intense, whereas sandstones were deposited in relatively cold and arid climate. In Late Jurassic, it is more likely that paleoclimate became more arid and cold compared with Middle Jurassic, indicated by quite low CIA and Rb/Sr. Redox condition (Th/U, Ni/Co and V/Cr) was variable, probably controlled by paleoclimate. Moreover, various discrimination diagrams suggested that Middle Jurassic coal-bearing sedimentary rocks were accumulated in foreland basin. It is consistent with previous interpretations of regional tectonic during Triassic and Jurassic time.

Downloads

Download data is not yet available.

References

Баатархуяг А., Алтанцэцэг. Уранбилэг.Л., Байгалмаа. Н., 2010. Нарийнсухайтын нүүрсний ордын насны шинэ мэдээлэл. Хайгуулчин. 1. 81-83.

Баатархуяг. А., Алтанцэцэг. Д., Ичинноров. Н., 2012. Нарийнсухайтын чулууннүүрсний ордын эртний ургамал, үр тоосонцрын талаарх шинэ мэдээллээс. Хайгуулчин. 46. 192-199.

Баатархуяг А., Алтанцэцэг Д., Байгалмаа Н., Болормаа Б., 2021. Нарийнсухайт хотгорын геологийн тогтоц. Геологи судлал 25, 91- 119

Бат-Эрдэнэ, 2009. Монголын нүүрсний орд, савууд. Д.Бат-Эрдэнэ (ред.) Шатах ашигт малтмал. Монголын геологи ба ашигт малтмал цуврал. Соёмбо принтинг. х.27-175.

Болормаа Э., Эрдэнэцогт Б., Нансалмаа Д., Жаргал Л., Байгалмаа Н., Бат Б., 2019. Дунд пермийн Тавантолгой формацийн элсэн чулууны петрографи, геохимийн судалгааны үр дүн. Геологийн асуудлууд 17 (519), 112-123.

Armostrong-Altring JS., Verma, SP., 2005, Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings. Sedimentary Geology 177, 115–29.

Badarch, G., Cunningham, W.D., Windley, B.F., 2002. A new terrain subdivision for Mongolia: implications for the Phanerozoic crustal growth of central Asia. Journal of Asian Earth Sciences 21, 87–110.

Badarch, G., 2005. Tectonics of South Mongolia. In: Seltmann, R., Gerel, O., Kirwin, D. (Eds.), Geodynamics and Metallogeny of Mongolia with a Special Emphasis on Copper and Gold Deposits. London, pp. 119–129.

Batbold., D., Jargal L., Munkhtsengel B., Nansalmaa D., 2018. Petrography and geochemistry of Middle Permian Tavantolgoi formation, Baruunnaran coal deposit, southern Mongolia. Geophysical Research Abstracts Vol. 20, EGU2018- 11421, EGU General Assembly.

Bhatia M. R. & Crook K. A. W. 1986. Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology 92, 181–93.

Bhatia, M.R., 1983. Plate tectonics and geochemical composition of sandstones. Journal of Geology 91, 611–627

Cao, H., Guo, W., Shan, X., Ma, L., Sun, P., 2015. Paleolimnological environments and organic accumulation of the Nenjiang Formation in the southeastern Songliao Basin. China, Oil Shale 32 (1), 5–24.

Cao, J., Wu,M., Chan, Y., Hu, K., Bian, L.Z.,Wang, L.G., Zhang, Y., 2012. Trace and rare earth elements geochemistry of Jurassic mudstones in the northern Qaidam basin, northwest. China. Chemie der Erde 72, 245–252.

Chen, J., An, Zh., Head, J., 1999. Variation of Rb/Sr Ratios in the Loess-Paleosol Sequences of Central China during the Last 130,000 Years and Their Implications for Monsoon Paleoclimatology. Quaternary Research 51, 215-219.

Chen, G., Robertson, A., 2020. User’s guide to the interpretation of sandstones using whole-rock chemical data, exemplified by sandstones from Triassic to Miocene passive and active margin settings from the Southern Neotethys in Cyprus. Sedimentary Geology 400, 105616.

Cullers, R.L., 1995. The controls on the major-and trace-element evolution of shales, siltstones and sandstones of Ordovician to Tertiary age in the Wet Mountains region, Colorado, USA. Chem. Geol. 123, 107–131.

Dumitru, T., Hendrix, M., 2001. Fission-track constraints on Jurassic folding and thrusting in southern Mongolia and their relationship to the Beishan thrust belt of northern China. In Hendrix, M.S., and Davis, G.A., Paleozoic and Mesozoic Tectonic Evolution of Central and Eastern Asia: From Continental Assembly to Intracontinental Deformation: Geological Society of America Memoir 194, p. 215- 229.

Erdenetsogt B., Jargal L., 2021. Coal Deposits. In: Gerel O., Pirajno F., Batkhishig B., Dostal J. (eds) Mineral Resources of Mongolia. Modern Approaches in Solid Earth Sciences, vol 19. Springer, Singapore. https://doi.org/10.1007/978- 981-15-5943-3_14

Erdenetsogt, B., Lee, I., Bat-Erdene, D., Jargal, L., 2009. Mongolian coal-bearing basins: Geological settings, coal characteristics, distribution, and resources. International Journal of Coal Geology 80, 87-104.

Floyd, P., Leveridge, B., 1987. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones. J. Geol. Soc. 144, 531–542

Graham, S.A., Hendrix, M.S.,Wang, L.B., and Carroll, A.R., 1993, Collisional successor basins of western China: Impact of tectonic inheritance on sand composition: Geological Society of America Bulletin, v. 105, p. 323–344.

Graham, S.A., Hendrix, M.S., Johnson, C.L., Badamgarav,D., Badarch, G., Amory, J., Porter,M., Barsbold, R., Webb, L.E., Hacker, B.R., 2001. Sedimentary record and tectonic implications of Mesozoic rifting in SoutheastMongolia. Geological Society of America Bulletin 113, 1560– 1579.

Hayashi, K.I., Fujisawa, H., Holland, H.D., Ohmoto, H., 1997. Geochemistry of ~1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta 61, 4115–4137.

Hendrix, M., Beck, M., Badarch, G., and Graham, S., 2001, Triassic synorogenic sedimentation in southern Mongolia: Early effects of intracontinental deformation, in Hendrix, M.S., and Davis, G.A., eds., Paleozoic and Mesozoic Tectonic Evolution of Central and Eastern Asia: From Continental Assembly to Intracontinental Deformation: Geological Society of America Memoir 194, p. 199– 214.

Hendrix, M.S., Graham, S.A., Amory, J.Y., Badarch, G., 1996. Noyon Uul Syncline, southern Mongolia; lower Mesozoic sedimentary record of the tectonic amalgamation of Central Asia. Geological Society of America Bulletin 108, 1256– 1274.

Herron, M.M., 1988. Geochemical classification of terrigenous sands and shales from core or log data. J. Sediment. Res. 58, 820–929.

Hasegawa, H., Ando, A., Hasebe, N., Ichinnorov, N., Ohta, T., Hasegawa, T., Yamanoto, M., Li, G., Erdenetsogt, B.O., Heimhofer, U., Murata, T., Shinya, H., Enerel, G., Oyunjargal, G., Munkhtsetseg, O., Suzuki, N., Irino, T. and Yamanoto, K., 2018. Depositional ages and characteristics of Middle–Upper Jurassic and Lower Cretaceous lacustrine deposits in southeastern Mongolia. Island Arc. 2018; 27: e12243.

Johnson, C.L., Amory, J., Zinniker, D., Lamb, M., Graham, S., Affolter, M., and Badarch, G., 2008, Sedimentary response to arc-continent collision, Permian, southern Mongolia, in Draut, A.E., Clift, P.D., and Scholl, D.W., eds., Formation and Applications of the Sedimentary Record in Arc Collision Zones: Geological Society of America Special Paper 436, p. 363–390, doi:10.1130/2008.2436(16)

Johnson, C.L., Constenius, K.C., Graham, S.A., Mackey,G., Menotti, T., Payton, A., Tully, J., 2015. Subsurface evidence for late Mesozoic extension in Western Mongolia: tectonic and petroleum systems implications. Basin Research 27, 272–294.

Kiminami, K., Kumon, E, Nishimura, T., Shiki, T., 1992. Chemical composition of sandstones derived from magmatic arcs. Mem. Geol. Soc. Japan 38, 361-372.

Kostina, E., Herman, A., 2013. The Middle Jurassic flora of South Mongolia: Composition, age and phytogeographic position. Review of Palaeobotany and Palynology 193, 82-98.

Kumon and Kiminami, 1994 Modal and chemical compositions of the representative sandstones from the Japanese Islands and their tectonic implications. Proc 29th Intl., Geol. Gong. Part A, 135-151.

Lamb, M.A., Badarch, G., 2001. Paleozoic sedimentary basins and volcanic arc systems of southern Mongolia: newgeochemical and petrographic constraints. In: Hendrix,M.S., Davis, G.A. (Eds.), Paleozoic and Mesozoic Tectonic Evolution of Central Asia — From Continental Assembly to Intracontinental Deformation: Geological Society ofAmerica Memoir, vol. 194, pp. 117– 150.

Lamb, M.A., Badarch, G., 1997. Paleozoic sedimentary basins and volcanic-arc systems of southern Mongolia: new stratigraphic and sedimentologic constraints. International Geology Review 39, 542–576.

Lamb, M.A., Badarch, G., Navratil, T., Poier, R., 2008. Structural and geochronologic data from the Shin Jinst area, eastern Gobi Altai, Mongolia: Implications for Phanerozoic intracontinental deformation in Asia. Tectonophysics 451, 312–330.

Lowen, K., Meinhold, G., Güngör, T., 2018. Provenance and tectonic setting of Carboniferous–Triassic sandstones from the Karaburun Peninsula, western Turkey: A multi-method approach with implications for the Palaeotethys evolution. Sedimentary Geology 375, 232-255.

McLennan, S.M., 1993. Weathering and global denudation. J. Geol. 101, 295– 303.

McLennan, S. M., Taylor, S. R„ McCulloch, M. T., and Maynard, J. B, 1990, Geochemical and Nd-Sr isotopic composition of deep sea turbidites: Crustal evolution and plate tectonic association: Geochimica et Cosmochimica Acta, v. 54, p. 2015- 2050.

McLennan, S.M., Hemming, S., McDaniel, D.K., Hanson, G.N., 1993. Geochemical approaches to sedimentation, provenance, and tectonics. Geological Society of America Special Papers 284, 21–40.

Mohammedyasin, M., Wudie, G., 2019. Provenance of the Cretaceous Debre Libanos Sandstone in the Blue Nile Basin, Ethiopia: Evidence from petrography and geochemistry. Sedimentary Geology 379, 46-59.

Nesbitt H. W. & Young G. M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715–17.

Nesbitt H. W. & Young G. M. 1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta 48, 1523–1534.

Nesbitt H.W., Fedo C. M. & Young G. M. 1997. Quartz and feldspar stability, steady and non-steady-state weathering, and petrogenesis of siliciclastic sands and muds. Journal of Geology 105, 173–91.

Fedo C. M., Nesbitt H. W. & Young G. M. 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23, 921–4.

Pettijohn, F.J., Potter, P.E., Siever, R., 1972. Sand and Sandstone. Springer-Verlag, New York (553 pp).

Purevjav, N., Roser, B.P., 2012. Geochemistry of Devonian–Carboniferous clastic sed-iments of the Tsetserleg terrane, Hangay Basin, Central Mongolia: provenance,source weathering, and tectonic setting. Island Arc 21, 270–287.

Roser B. P. & Korsch R. J. 1986. Determination of tectonic setting of sandstone and mudstone suites using SiO2 and K2O/ Na2O ratio. Journal of Geology 94, 635– 50.

Roser B. P. & Korsch R. J. 1988. Provenance signatures of sandstone-mudstone suites determined using discrimination function analysis of major element data. Chemical Geology 67, 119–39.

Roser B. P., 2000. Whole-rock geochemical studies of clastic sedimentary suites. Memoirs of the Geological Society of Japan 57, 73–89.

Rudnick R. L., Gao S., 2005. Composition of the continental crust. In Rudnick R. L. (ed.) The Crust, Treatise on Geochemistry, 3, pp. 1–64, Elsevier–Pergamon, Oxford.

Sengor, A.M.C., Natal’in, B.A., Burtman, V.S., 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 364, 299–307.

Sjostrom, D.J., Hendrix, M.S., Badamgarav, D., Graham, S.A., Nelson, B.K., 2001. Sedimentology and provenance of Mesozoic nonmarine strata in western Mongolia; a record of intracontinental deformation. In: Hendrix, M.S., Davis, G.A. (Eds.), Paleozoic and Mesozoic Tectonic Evolution of Central Asia—From Continental Assembly to Intracontinental Deformation: Geological Society of America Memoir, vol. 194, pp. 361–388.

Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, United States (312 pp).

Verma, S.P., Armstrong-Altrin, J.S., 2013. New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chemical Geology 355, 117–133.

Verma, S.P., Armstrong-Altrin, J.S., 2016. Geochemical discrimination of siliciclastic sediments from active and passive margin settings. Sediment. Geol. 332, 1–12.

Zhao, Z.Y., Zhao, J.H., Wang, H.J., Liao, J.D., Liu, C.M., 2007. Distribution characteristics and applications of trace elements in Junggar Basin. Nat. Gas Explor. Dev. 30, 30–33 (in Chinese with English abstract).

Zhou, D., and Graham, S.A., 1996, Songpan- Ganzi complex of the west Qinling Shan as a Triassic remnant-ocean basin, in Yin, A., and Harrison, M., eds., Tectonic evolution of Asia: Cambridge, Cambridge University Press, p. 281–299.

Wang, Sh., Dong, D., Wang, Y., Li, X., Huang, J., Guan, Q., 2016. Sedimentary geochemical proxies for paleoenvironment interpretation of organic-rich shale: A case study of the Lower Silurian Longmaxi Formation, Southern Sichuan Basin, China. Journal of Natural Gas Science and Engineering 28, 691-699.

Downloads

Published

2022-03-16

How to Cite

Н., Байгалмаа, Эрдэнэчимэг Д., Эрдэнэцогт Б., Жаргал Л., Огата Т., Эрдэнэбаяр Ж., Баатархуяг А., Нансалмаа Д., and Билгүүн Б. 2022. “ӨМНӨД МОНГОЛЫН ДУНД ЮРЫН УУР АМЬСГАЛ, ГЕОДИНАМИКИЙН НӨХЦӨЛ. I ХЭСЭГ: НАРИЙНСУХАЙТ ОРДЫН ЭЛСЭН ЧУЛУУНЫ ГЕОХИМИЙН СУДАЛГАА”. Geological Issues 19 (1):45-61. https://journal.num.edu.mn/geology/article/view/869.

Issue

Section

Судалгааны өгүүллэг

Most read articles by the same author(s)

1 2 3 > >>