ДУНД-ДЭЭД ЮРЫН ХУЖИРТ ОРДЫН НҮҮРСНИЙ ГЕОХИМИЙН СУДАЛГАА: ХОЙД МОНГОЛЫН ЮРЫН УУР АМЬСГАЛ, ГЕОДИНАМИКИЙН НӨХЦЛИЙН АСУУДАЛД

Authors

  • Эрдэнэцогт Б. МУИС, Шинжлэх Ухааны Сургууль, Геологи, геофизикийн тэнхим https://orcid.org/0000-0002-0748-2757
  • Байгалмаа Н. МУИС, Шинжлэх Ухааны Сургууль, Геологи, геофизикийн тэнхим
  • Эрдэнэ А. Эрдгео ХХК

Keywords:

юра, нүүрс, сарнимал элемент, үндсэн исэл, тектоник, форланд

Abstract

Khujirt is a syncline that hosts Jurassic coal deposit in Northern Mongolia. Nine coal samples collected from exploration borehole were selected for analyses of major oxide and trace elements of coal ash. The average value of CAI for the samples is 82.8, reflecting intensive weathering in the source area. The plotted data on A-CN-K diagram displays that rocks in coal were sourced mainly from Early Permian andesite and basalt and Early Paleozoic granodiorite, which borders Khujirt syncline. It is also supported by Al2O3/TiO2 (avg. 18.4) and Ti/Zr (avg. 37.1) ratios. To infer tectonic setting, two multi-dimensional discrimination diagrams were used. The results suggest that the tectonic setting of Khujirt was foreland basin that was probably formed by closure of Mongol-Okhotsk Ocean. Low Rb/Sr (0.02-0.04) and high Sr/Cu (13.8-30.6) ratios of the studied samples indicate that arid climate condition was dominant during the deposition of Khujirt peat accumulation. This conclusion is supported by C-values. Due to arid condition, salinity was high, reflected by substantially high Sr/Ba ratio varying from 1.7 to 2.7.

Downloads

Download data is not yet available.

References

Амар-Амгалан, С. 2009. Түрүү палеозойн интрузив чулуулаг. О.Гэрэл (ред): Интрүзив чулуулаг. Монголын геологи ба Ашигт малтмал III боть. Соёмбо принтинг, х.64-99.

Байгалмаа, Н., Эрдэнэчимэг, Д., Эрдэнэцогт, Б., Жаргал, Л., Огата, Т., Эрдэнэбаяр, Ж., Баатархуяг, А., Нансалмаа, Д., Билгүүн, Л., 2021. Өмнөд Монголын дунд юрын уур амьсгал, геодинамикийн нөхцөл. I хэсэг: Нарийнсухайт ордын элсэн чулууны геохимийн судалгаа. Гелогийн асуудлууд 19 (554), 45-61.

Батгэрэл, С., Эрдэнэцогт, Б., Байгалмаа, Н., Алтанцэцэг, Д., 2021. Өмнөд Монголын дунд юрын уур амьсгал, геодинамикийн нөхцөл. II хэсэг: Нарийнсухайт ордын нүүрсний геохимийн судалгаа. Гелогийн асуудлууд 19 (554), 62-73.

Бямба, Ж., Доржсүрэн, Б., Доржнамжаа, Д., Төмөрхүү, Д., Махбадар, Ц., 2009. Төв Монголын атираат муж. Ж.Бямба (ред): Литосферийн плитийн тектоник. Монголын геологи ба Ашигт малтмал IV боть. Соёмбо принтинг, х.199-321.

Дашхорол нар, 2017. Сэлэнгэ аймгийн Түшиг сумын нутагт орших Хужиртын нүүрсний ордод 2007-2016 онд гүйцэтгэсэн эрэл, хайгуулын ажлын үр дүнгийн тайлан. Улаанбаатар.

Жаргал, Л., Эрдэнэ, А., Дашхорол, А., Нансалмаа, Д., 2017. Хужиртын ордын нүүрсний петрографийн найрлага, чанарын судалгааны үр дүнгээс. Геологийн асуудлууд 15 (473), 36-45.

Armostrong-Altring JS., Verma, SP., 2005, Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings. Sedimentary Geology 177, 115–129.

Bai, Y., Liu, Zh., Sun, P., Liu, R., Hu, X., Zhao, H., Xu, Y., 2015. Rare earth and major element geochemistry of Eocene fine-grained sediments in oil shale- and coal-bearing layers of the Meihe Basin, Northeast China. Journal of Asian Earth Sciences 97, 89-101.

Bhatia M. R. & Crook K. A. W. 1986. Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology 92, 181–93.

Bhatia, M.R., 1983. Plate tectonics and geochemical composition of sandstones. Journal of Geology 91, 611–627

Cao, H., Guo, W., Shan, X., Ma, L., Sun, P., 2015. Paleolimnological environments and organic accumulation of the Nenjiang Formation in the southeastern Songliao Basin. China, Oil Shale 32 (1), 5–24.

Cao, J., Wu,M., Chan, Y., Hu, K., Bian, L.Z.,Wang, L.G., Zhang, Y., 2012. Trace and rare earth elements geochemistry of Jurassic mudstones in the northern Qaidam basin, northwest. China. Chemie der Erde 72, 245–252.

Chen, G., Robertson, A., 2020. User's guide to the interpretation of sandstones using whole-rock chemical data, exemplified by sandstones from Triassic to Miocene passive and active margin settings from the Southern Neotethys in Cyprus. Sedimentary Geology 400, 105616.

Diessel, C.F.K., 1992. Coal-bearing Depositional Systems. Springer-Verlag, Berlin

Erdenetsogt B., Jargal L., 2021. Coal Deposits. In: Gerel O., Pirajno F., Batkhishig B., Dostal J. (eds) Mineral Resources of Mongolia. Modern Approaches in Solid Earth Sciences, vol 19. Springer, Singapore. https://doi.org/10.1007/978-981-15-5943-3_14

Erdenetsogt, B., Lee, I., Bat-Erdene, D., Jargal, L., 2009. Mongolian coal-bearing basins: Geological settings, coal characteristics, distribution, and resources. International Journal of Coal Geology 80, 87-104.

Gordienko, I.V., Filimonov, A.V., Minina, O.R., Gornova, M.A., Medvedev, A., Klimuk, V., ELbaev, A., Tumurtogoo, O., 2007. Dzhida island-arc system in the Paleoasian Ocean: structure and main stages of Vendian-Paleozoic geodynamic evolution. Russian Geology and geophysics 48, 91-106.

Hayashi, K.I., Fujisawa, H., Holland, H.D., Ohmoto, H., 1997. Geochemistry of ~1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta 61, 4115–4137.

McLennan, S.M., Hemming, S., McDaniel, D.K., Hanson, G.N., 1993. Geochemical approaches to sedimentation, provenance, and tectonics. Geological Society of America Special Papers 284, 21–40.

McLennan, S.M., 1993. Weathering and global denudation. J. Geol. 101, 295–303.

Moradi, V., Sari, A., Akkaya, A., 2016. Geochemistry of the Miocene oil shale (Hançili Formation) in the Çankırı-Çorum Basin, Central Turkey: Implications for Paleoclimate conditions, source–area weathering, provenance and tectonic setting. Sedimentary Geology 341, 289-303

Nesbitt H. W. & Young G. M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715–17.

Nesbitt H. W. & Young G. M. 1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta 48, 1523–1534.

Nesbitt H.W., Fedo C. M. & Young G. M. 1997. Quartz and feldspar stability, steady and non-steady-state weathering, and petrogenesis of siliciclastic sands and muds. Journal of Geology 105, 173–91.

Fedo C. M., Nesbitt H. W. & Young G. M. 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23, 921–4.

Roser B. P. & Korsch R. J. 1986. Determination of tectonic setting of sandstone and mudstone suites using SiO2 and K2O/Na2O ratio. Journal of Geology 94, 635–50.

Roser B. P., 2000. Whole-rock geochemical studies of clastic sedimentary suites. Memoirs of the Geological Society of Japan 57, 73–89.

Rudnick R. L., Gao S., 2005. Composition of the continental crust. In Rudnick R. L. (ed.) The Crust, Treatise on Geochemistry, 3, pp. 1–64, Elsevier–Pergamon, Oxford.

Song, J., Bao, Z. et al., 2018. Sedimentology and geochemistry of Middle–Upper Permian in northwestern Turpan–Hami Basin, China: Implication for depositional environments and petroleum geology. Energy, exploration and exploitation 36, 910-941.

Verma, S.P., Armstrong-Altrin, J.S., 2013. New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chemical Geology 355, 117–133.

Vorontsov, A., Yarmolyuk, V., Lykhin, D., Dril, S., Tatarnikov, S., Sandimirova, G., 2007. Magmatic Sources and Geodynamics of the Early Mesozoic Northern Mongolia–Western Transbaikalia Rift Zone. Petrology 15, 35-57.

Wang, Sh., Dong, D., Wang, Y., Li, X., Huang, J., Guan, Q., 2016. Sedimentary geochemical proxies for paleoenvironment interpretation of organic-rich shale: A case study of the Lower Silurian Longmaxi Formation, Southern Sichuan Basin, China. Journal of Natural Gas Science and Engineering 28, 691-699.

Wronkiewicz, D.J., Condie, K.C., 1989. Geochemistry and provenance of sediments from the Pongola Supergroup, South Africa: evidence for a 3.0-Ga-old continental craton. Geochimica et Cosmochimica Acta 53, 1537–1549.

Zhao, Z.Y., Zhao, J.H., Wang, H.J., Liao, J.D., Liu, C.M., 2007. Distribution characteristics and applications of trace elements in Junggar Basin. Nat. Gas Explor. Dev. 30, 30–33 (in Chinese with English abstract).

Zorin, Yu.A., 1999. Geodynamics of the western part of the Mongolia–Okhotsk collisional belt, Trans-Baikal region (Russia) and Mongolia. Tectonophysics 306, 33–56.

Downloads

Published

2022-03-16

How to Cite

Б., Эрдэнэцогт, Байгалмаа Н., and Эрдэнэ А. 2022. “ДУНД-ДЭЭД ЮРЫН ХУЖИРТ ОРДЫН НҮҮРСНИЙ ГЕОХИМИЙН СУДАЛГАА: ХОЙД МОНГОЛЫН ЮРЫН УУР АМЬСГАЛ, ГЕОДИНАМИКИЙН НӨХЦЛИЙН АСУУДАЛД”. Geological Issues 20 (1):78-90. https://journal.num.edu.mn/geology/article/view/848.

Issue

Section

Судалгааны өгүүллэг

Most read articles by the same author(s)

1 2 > >>