Дундговь болон Хэрлэнгийн төмрийн металлогений бүсэд тархсан төмрийн ордууд

Authors

  • Оюунжаргал Л. МУИС, ШУС, Геологи, геофизикийн тэнхим
  • Оюунгэрэл С. МУИС, ШУС, Геологи, геофизикийн тэнхим
  • Тамир Б. МУИС, ШУС, Геологи, геофизикийн тэнхим
  • Гансүх Ү. Говь вентур ХХК
  • Идэрбаяр Б. Көүл ХХК

Keywords:

Дундговь, Хэрлэн, Металлогени, төмөрлөг кварцит, төмрийн скарн, ТИЗА

Abstract

Iron Oxide Apatite and Iron Oxide Copper Gold deposits generally consist of Fe and Cu-Au ore, and some deposits occasionally are recognized P, REE, Co, Ag and U. IOCG deposits are divided into magnetite and hematite subtypes by general ore mineral. Magnetite type IOCG has Na-Ca or, Na and potassic alteration zones, ore bodies are breccia and veins in shapes, ore-forming fluid was δ18O light supplied by magmatic and metamorphic waters. Hematite IOCG has a little potassic alteration zone, and ore bodies are formed breccia and lens in shapes in sericitic-chloritic alteration zone. Ore-forming fluid was δ18O heavy supplied by magma with a significant contribution of meteoric water. Banded Iron Formation is divided into Algoma, Superior and Rapitan sub types. The Algoma type BIF has δ18O of primary silica changed from +8‰ to +20‰ at temperatures below 100°C during diagenesis, indicating that although O isotope exchange occurs during diagenesis, low concentrations of rare earth and trace elements in siliceous shale do not change in ocean water-derived fluids. The Rapitan type, when the Earth’s oceans were almost completely covered by ice and cut off from the atmosphere, the ferruginous quartzite was deposited in the water at a time when the oceans were re-oxygenated. Prominent deposits of superior-type ferruginous quartzite occur in Paleoproterozoic sedimentary basins or in shallow-water sedimentary rocks of the continental shelf (Dartsagt, Ereen). Iron skarn deposits are divided into calcic, magnesian, and scapolite (albite) by their general chemical composition. Calcic iron skarn is developed at contact of carbonate bearing rocks and basic intrusion, and ore consists of magnetite, chalcopyrite, cobaltite, and pyrrhotite. Host rocks of magnesian iron skarn are typically dolomite, or limestone, quartzite, and schist associated with dolomitic. Ore minerals are recognized as magnetite, chalcopyrite, pyrite, sphalerite, arsenopyrite, and pyrrhotite in these type deposits (Bargilt). Host rocks are andesite, tuff, limestone, argillite at the scapolite (albite) iron skarn, then magnetite, hematite, pyrite, marcasite, chalcopyrite, sphalerite, pyrrhotite, and arsenopyrite are ore minerals.

Downloads

Download data is not yet available.

References

Chen, H. (2013) External sulphur in IOCG mineralization: implications on definition and classification of the IOCG clan. Ore Geology Reviews, 51, 74–78.

Dejidmaa, G., Bujinlkham, B., Eviihuu, A., Enkhtuya, B., Ganbaatar, T., Munkh-Erdene, N. and Oyuntuya, N. (1996) Distribution map of deposits and occurrences in Mongolia (scale 1:1,000,000). Geologic Information Center, Mineral Resources Authority of Mongolia, Ministry of Industry and Trade of Mongolia, Ulaanbaatar, Open- File Report, 280.

Francisco, T.V., Antonio, P.S., Marly, B., Cristiano, L., Ricardo, I.F.T, Eduardo, S. (2021) Diamictitic iron formation (DIF) deposits of the Neoproterozoic Nova Aurora Iron District (Macaúbas Group, Southeast Brazil). Journal of South American Earth Sciences, 112(2),103614.

Frietsch, R. (1970) Trace elements in magnetite and hematite mainly from northern Sweden: Aarsbok, Sveriges Geologiska Undersoekning, 64, 136.

Garrels R.M. (1987) A model for the deposition of the microbanded Precambrian iron formations. American Journal of Science 287, 81–106.

Gourcerol, B., Thurston, P.C., Kontak, D.J., Côté-Mantha, O., Biczok, J. (2016) Depositional setting of Algoma-type banded iron formation. Precambrian Research, 281, 47-79.

Hall, C. M. (1989) Hallmark Tourist Events: Analysis, Definition, Methodology and Review. In: Syme, G. J.; Shaw, B. J.; Fenton, D. M.; Mueller, W. S. (ed.), The Planning and Evaluation of Hallmark Events. Avebury, Aldershot.

Hauck, S.A. (1990) Petrogenesis and tectonic setting of middle Proterozoic iron oxide-rich ore deposits: An ore deposit model for Olympic Dam-type mineralization: U.S. Geological Survey Bulletin B-1932, 4–39.

Hitzman, M.W., Oreskes, N., Einaudi, M.T. (1992) Geological characteristics and tectonic

Isley A. E. (1995) Hydrothermal plumes and the delivery of iron to banded iron formation. Journal of Geology 103, 169–185.

James H.L. (1954) Sedimentary facies iron-formation. Economic Geology, 49 (3), 235–293.

James H.L. (1983) Distribution of banded iron-formation in space and time. In: Trendall A. F. & Morris R. C. eds. Banded Iron -Formation: Facts and Problems. Elsevier, Amsterdam. 471–490.

Jargalan, S., Enkhjargal, B., Altankhuyag. D. (2017) Ore deposits. Ulaanbaatar, Mongolia 11-25p. (in Mongolian).

Kisvarsanyi, G., and Proctor, P.D. (1967) Trace-element content of magnetites and hematites, southeast Missouri iron metallogenetic province, U.S.A: Economic Geology, 62, 449–471.

Lascelles D. F. (2012) Banded iron formation to high-grade iron ore: a critical review of supergene enrichment models, Australian Journal of Earth Sciences, 59:8, 1105-1125.

Mitchell, R.H., Krouse, H.R. (1975) Sulfur isotope geochemistry of carbonatites. Geochim. Cosmochim. Acta 39, 1505–1513.

Morris R.C and Horwitz R.C. (1983) The origin of the iron-formation-rich Hamersley Group of Western Australia – deposition on a platform. Precambrian Research 21, 273–297.

Morris. R. C. (1993) Genetic modelling for banded iron-formation of the Hamersley Group, Pilbara Craton, Western Australia. In: Blake T. S. & Meakins A. eds. Archean and early Proterozoic geology of the Pilbara Region, Western Australia. Precambrian Research 60, 243–286.

Oyunjargal, L., Hayashi, K. and Maruoka, T. (2020) Geological, mineralogical, and oxygen isotope studies of the Chandmani Uul iron oxide–copper–gold deposit in Dornogobi Province, Southeastern Mongolia. Resource Geology, 70, 233–253.

Purtov, V. K., Yatluk, G. M. and Anfilogov, V. N. (1985) The Fe, Mg, Si, and Al ratios in chloride solutions at 873 K and 101 MPa in relation to limestone skarning. Doklady AN SSSR, 275(4): 1003–1006.

Roger G. S. (2022) Iron oxide copper-gold (IOCG) deposits – A review (part 1): Settings, mineralogy, ore geochemistry and classification, Ore Geology Reviews, 140, (104569).

setting of Proterozoic iron oxide (CuUAu-REE) deposits. Precambrian Res. 58,

Trendall A.F and Blockley J.G. (1970) The iron formations of the Precambrian Hamersley Group, Western Australia, with special reference to the associated crocidolite. Geological Survey of Western Australia Bulletin 119, 353.

Trendall A.F. (2002) The significance of iron-formation in the Precambrian stratigraphic record. Int Assoc Sedimentology Spec Publication, 33, 33–66.

Ukhnaa, G. and Baasan, B. (2016) Iron deposits in Mongolia. Ulaanbaatar: GCOM 283 p. (in Mongolian).

Walter L. Pohl. (2011) Economic Geology principles and Practice. 149-159.

Williams, P.J., Barton, M.D., Jhonson, D.A., Fontboté, L., de Haller, A., Mark, G., Oliver, N.H.S. and Marschik, R. (2005) Iron oxide–copper–gold deposits: geology, space–time distribution, and possible models of origin. In: Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J. and Richards, J.P. (Eds.) Economic Geology 100th Anniversary Volume. Littleton: Society of Economic Geologists Inc., 371–405.

Downloads

Published

2022-10-31

How to Cite

Л., Оюунжаргал, Оюунгэрэл С., Тамир Б., Гансүх Ү., and Идэрбаяр Б. 2022. “Дундговь болон Хэрлэнгийн төмрийн металлогений бүсэд тархсан төмрийн ордууд”. Geological Issues 21 (02):201-11. https://journal.num.edu.mn/geology/article/view/1261.

Most read articles by the same author(s)