МОНГОЛ ОРНЫ ЗАРИМ ТАЛБАЙНУУДАД ТАРХСАН МАГМЫН БОЛОН ТУНАМАЛ ЧУЛУУЛГУУДЫН ЦИРКОНЫ TH/U-НЫ ХАРЬЦАА БОЛОН ДОТООД БҮТЦИЙН СУДАЛГАА
Abstract
We investigated the zircon Th/U ratios and their internal textures from more than 60 magmatic rocks and a few sedimentary rocks which are collected from different areas of Mongolia such as the Tavt ore field, the Dzuun mod areas, and others. All these zircon
samples were photographed in SEM images, backscattered (BSE) and cathodoluminescence (CL) images that are used to examine the internal texture of the analyzed zircons and with petrographic observations guided the selection of analytical spots, using a JEOL JSM-6610LV scanning electron microscope at KBSI (Korea Basic Science Institute). High‐precision data on U and Th contents and Th/U ratios of zircon obtained using a SHRIMP IIe and a LA-MCICPMS housed at KBSI. A long experience, modern instrumentation, and techniques have provided the “zircon community” means to image and interpret preserved textures, and to decipher the history and evolution of rock. The zircon internal texture images are categorized according to their inferred genetic context. The behavior of U and Th in magmatic zircon can be used as a geochemical indicator to determine the origins and crystallization environments of magmatic zircon. Increasing magma temperature should promote higher Th contents relative to U contents, resulting in higher Th/U ratios for zircon in mafic to intermediate rocks than in granitic rocks. Th/U values in zircon are commonly used to discriminate between metamorphic
(Th/U < 0.1) and magmatic (Th/U > 0.1) origin for zircon overgrowths. We test this hypothesis in the rocks from some areas of Мongolia. Higher temperature, more-fractionated, short-duration, bimodal magmatism in extensional magmatic systems may produce highly variable and elevated zircon Th/U. In compressional magmatic systems, lower temperature, long-lived, granitoid, oxidizing melts
are more conducive to low Th/U zircon crystallization. To test the utility of this correlation, we evaluated Th/U ratios in our samples. Most of them have the low Th/U ratios between 0.1–1.0 that corresponds to overall compressional phases (i.e., terrane accretion and orogenesis).
Downloads
References
Алтанзул Ч., Оюунгэрэл С., Жаргал Л., Insung Lee., Kim Yeongmin., Хасмарал Т., 2018. “Бороо-Зуунмодны дүүрэгт тархсан магмын чулуулгийн үнэмлэхүй насны судалгаа”. “Хайгуулчин” сэтгүүл №59” Round Up 2018 хурлын 10 жилийн ойн туcгай дугаар, 211-232 хуудас
Жаргал Л., Алтанзул Ч., Оюунгэрэл С., Insung Lee., Kim Yeongmin., 2018. “Хараагийн террейн дэх Зуунмодны дүүрэгт тархсан элсэнчулууны хэмхдэсийн модаль шинжилгээний үр дүн”. “Хайгуулчин” сэтгүүл №59” Round Up 2018 хурлын 10 жилийн ойн туcгай дугаар, 190-199
Burnham A.D., Berry A.J., 2012. An experimental study of trace element partitioning between zircon and melt as a function of oxygen fugacity. Geochimica et Cosmochimica Acta 95, 196–212.
Cassel E.J., Grove M., Graham S.A., 2012. Eocene drainage evolution and erosion of the Sierra Nevada batholith across northern California and Nevada. American Journal of Science 312 (2), 117–144.
Fernando Corfu., John M. Hanchar., Paul W.O., Peter Kinny., 2003. Atlas of Zircon Textures. In: Hancher JM, Hoskin PWO. editors Zircon: Reviews in Mineralogy and Geochemistry. New York: American Mineralogy Society 53, 469-500.
Folk R.L., 1968. Petrology of Sedimentary Rocks. Hemphill Publishing Company, Austin, Texas.
Gatewood M.P., Stowell H.H., 2012. Linking zircon U-Pb and garnet Sm-Nd ages to date loading and metamorphism in the lower crust of a Cretaceous magmatic arc, Swakana Gneiss, WA, USA. Lithos 146–147, 128–142.
Hoskin P.W.O., Schaltegger U., 2003. The composition of Zircon and Igneous and Metamorphic petrogenesis. In:
Hancher JM, Hoskin PWO. editors Zircon: Reviews in Mineralogy and Geochemistry. New York: American Mineralogy Society 53, 27-62.
Kirkland C.L., Smithies R.H., Taylor R.J.M., Evans N., McDonald B., 2015. Zircon Th/U ratios in magmatic environs. Lithos 212–215, 397–414.
Mariano A.N., 1978. The application of cathodoluminescence for carbonatite exploration and characterization. Proc Intl Symp Carbonatites. Brasil Depart Nac Prod Mineral, Brasilia, 39-57.
Mariano A.N., 1989. Cathodoluminescence emission spectra of rare earth element activators in minerals. Rev Mineral 21:339-348.
Matthew P., McKay.William T., Jackson Jr., Angela M. Hessler., 2018. Tectonic stress regime recorded by zircon Th/U. Gondwana Research, GR Focus Review.
Ohnenstetter D., Cesbron F., Remond G., Caruba R., Claude J-M., 1991. Émissions de cathodoluminescence de deux populations de zircons naturels: téntative d’interpretation. C R Acad Sci Paris 313:641-647.
Oyungerel S., Erdenesonor N., Insung Lee., Jargal L., Maibayar O., 2017. Annual Fall Joint Geology Meeting of the Geological Society of Korea “Petrographic and LA-MC-ICPMS detrital zircon U-Pb age dating studies of the Altan-Ovoo formation sandstones from the Khangai-Khentii basin of Mongolia. October 24-27.
Oyungerel S., Insung Lee., Jargal L., Tegshbayar B., Maibayar O., 2018. “SHRIMP U-Pb zircon geochronology of the Dhzida intrusive rocks in the Tavt ore field, northern Mongolia”. “Geological Issues of Mongolia and Adjacent Regions GIMAR-II-2018” ISSN 2313-8408, Journal for “GIMAR-2018” Geological international conference 446 (14)”, 104-110.
Paces J.B., Miller J.D., 1993. Precise U-Pb ages of Duluth Complex and related mafic intrusions, Northeartern Minnesota: Geochronological insights to physical, petrogenic, paleomagnetic, and tectonomagmatic processes associated with the 1.1Ga midcontinent rift system. J. Geophysical Research-Solid Earth 98, 13997-14013.
Şengör A.M.C., Natal’in B.A., Burtman V.S.,1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature volume 364, pages 299– 307.
Tomurtogoo O., 2014. Tectonic framework of Mongolia.In: Petrov OV, Leonov YG, Pospelov II (eds) Tectonic of Northern, Central and Eastern Asia. Explanatory Note to the Tectonic map of Northern- Central-Eastern Asia.
Remond G., Cesbron F., Chapoulie R., Ohnenstetter D., Roques- Carmes C., Schoverer M., 1992. Cathodoluminescence applied to the microcharacterization of mineral materials: A present status in experimentation and interpretation. Scan Microsc 6:23-68.
Rubatto D., 2002. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology 184:123–138. https://doi.org/10.1016/ S0009-2541 (01)00355-2.
Rudnick R.L., Williams I.S., 1987. Dating the lower crust by ion microprobe. Earth Planet Sci Lett 85:145-161.
Watson .B., Liang Y., 1995. A simple model for sector zoning in slowly grown crystals: Implications for growth rate and lattice diffusion, with emphasis on accessory minerals in crustal rocks. Am Mineral 80:1179-1187.
Yang B., Luff B.J., Townsend P.D., 1992. Cathodoluminescence of natural zircons. J Phys: Condens Matter 4:56175624.
Williams I.S. ., Claesson S., 1987. Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides. Contributions to Mineralogy and Petrology, October 1987, Volume 97, Issue 2, pp 205–217.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Геологийн асуудлууд
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.