Integrated Geophysical and geochimestry investigations at the Ondurnaran lode gold deposit

Authors

  • Tamir Bayaraa МУИС, Шинжлэх Ухааны Сургууль, Геологи, геофизикийн тэнхим
  • Oyunjargal Luvsannyam МУИС, Шинжлэх Ухааны Сургууль, Геологи, геофизикийн тэнхим
  • Daariimaa Badarch МУИС, Шинжлэх Ухааны Сургууль, Геологи, геофизикийн тэнхим
  • Tseedulam Khuut Mongolian University of Science and Technology

Abstract

Undurnaran deposit (1090 34’ 23.1 E, 440 40’ 51.7” N) locates in Saikhandulaan soum of Dornogovi province. Detailed geological prospecting work using scale of 1:10000 was carried out from 2009 up to 2011. Mineralization of the Undurnaran deposit is related to Upper Carboniferous Gunbayan formation volcanogenic-sedimentary rocks and Late Carboniferous Mandakh complex diorite. Microquartzite, quartzite and carbonate veins contain gold micrograins.  Sometimes gold is included in meta-andesite and diorite. Alteration zone with a little arched form directs from southeast to northward. Size of the alteration zone is ranging from 20 meters up to 30 meters in wide and its length continues approximately 500 meters. Gold grade reaches approximately 3.5-4.5 g/t within mineralization zone. Gold mineralization is mainly controlled by Saikhandulaan abyssal fault which continues from northeast to southwest.

Downloads

Download data is not yet available.

References

Badarch G., 2005. Tectonics of South Mongolia: In: Seltmann, R., Gerel, O., Kirwin, D.J (Eds) Geodynamics and Metallogeny of Mongolia with a specialemphases on copper and gold deposits, IAGOD Guidebook Series 11: CERCAMS/NHM London, p.119-129.

Badarch G., Dickson C., Brain F.W., 2002. A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia. Journal of Asian Earth Sciences 21, p.87-110.

Barnes Lloyd Hubert., 1979. Geochemisty of hydrothermal ore deposits, Second Edition p.236-390, Third Edition p.657

Bodnar R.J, 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl Solutiones. Ceochim. Cosmochim. Acta. 75. p.683-684.

Chappel B.W, White A.J.R. 1974. Two contrasting granite types. Pacific Geol. 8, 173-174.

Clayton R.N., O'Neil J.R., Mayeda T.K., 1972. Oxygen isotope exchange between quartz and water. J. Geophys. Res 77, 3057(17).

Cox K.G., Bell J.D. and Pankhurst R.J., 1979. The Interpretation of Igneous Rocks. //George Allen & Unwin. London, p.411.

Defant M.J., Drummond, M.S., 1990. Derivation of some arc magmas by melting of young subducted lithosphere. Nature. Vol. 347, p.662-665.

Goldstein J, Newbury D., Echlin P., Joy D., Fiori C., Lifshin E., 1984. Scanning Electron Microscopy and X-ray Microanalysis., Plenum Press,

Goldfrab R.J, Groves D.I, 2015. Orogenic gold deposit: Common or evoling fluid and metal sources thought time. Lithos, 233, p.2-26.

Groves D.I, 1993. The crustal Continuum Model for Late-Archaem Lode-Gold deposits of the Yilgarn Block, Westren Australia. Mineralium Deposita 28(6):366-74.

Groves D.I, Goldfarb R.J, Gerbe-Martiam M, Hagemann S.G, Robert F, 1998. Orogenic gold deposit: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types: Ore geology reviews, v. 13, p.7-27.

Guilbert M. John., Jr.Park.F Charles., 1986. The Geology of Ore Deposits., p.251

Harker A., 1909. The natural history of the igneous rocks. New York, 384 pp.

Kirwin D.J., Forster C.N., Kavalieris I.,Crane D., 2005. The OyuTolgoi Copper-Gold porphyry Deposits, South Gobi, Mongolia. In “Geodynamics and Metallogeny of Mongolia with a special emphasis on copper and gold deposits”, London, p.155-168.

Lindgern W, 1933. Mineral deposits, 4th ed. McGraw Hill, New York and London, p. 930

Martin H., 1999. Adakitic magmas: modern analogues of Archaean granitoids, Lithos, 46, p.411-429.

Matsuhisa Y, Goldsmith JR, Clyaton NR (1979) Oxegyn isotopic fractionation in the system qwartz-alibite-anorthite-water, Geochim Cosmochim Acta 43:1131-1140.

O’Connor J.T., 1965. A classification for quartz-rich igneous rocks based on feldspar ratio. U.S. Geol. Surv. Prof. Paper 525B, p.79–84

Pearce J.A., Peate D.W., 1995. Tectonic implications of the composition of volcanic arc magmas. Annu. Rev. Earth Planet. Sci. 23, p.251–285.

Pearse J.A., Harris N.B.W., Tindle A.G., 1984. Trace elememt discrimination diagrams for the tectonic interpretation of granitic rocks: Journal of Petrology, Vol.25, 4, p.956-983.

Richards J.P., Kerrich R., 2007. Adakite-like rocks-Their diverse origins and questionable role in metallogenesis. Economic Geolgy, Vol.102, p.537-576.

Rollinson H.R., 1994. Using geochemical data; evolution, presentation, interpretation. Essex: London Group U K Ltd, p352.

Robert, F., Brommecker, R., Bourne, B.T., Dobak. P.J., McEwan 2007. Models and Expolration Methods for Major Gold Deposit types p. 691-711

Ripley E.M, Li C.S, 2003. Sulfur isotope exchange and metal enrichment in the formation of magmatic Cu-Ni-(PGE) deposit. Econimic geology the Bulletin of the society economic geologist. v.98. p.635-641.

Rui Z.Y., Goldfarb R.J., Qiu Y.M., Zhou T.H., Chen R.Y., Pirajno F., Yun G. 2002. Paleozoic-early Mesozoic gold deposits of the Xinjiang Autonomous Region, northwestern China. Miner. Depos. 37, p.393–418.

Samson Lian, Anderson Alan, Marshall Dan., 2003. Fluid Inclusions, Chapter 4, p.81-89

Taylor S.R, MeLennan S.M, 1985. The continental crust: its composition and evolution. Blackwell, Oxford.

T.Cambell Mc Cuig, Robert Kerrich, 1998. P-T-t-deformation-fluid characterisics of lode gold deposits: evidence from alteration systematics. Ore Geology Reveiws 12 (1998) p.381-453, 420.

Таmir B, Oyungerel S, Jargalgan S., 2017. Ore mineralogical and fluid inclusion study of Undurnaran deposit, Моngolian Geoscientist v 45, p 337.

Таmir B, Jargal L, Dorjgotov D., 2018. Geology and ore mineralogical study of Undurnaran gold deposit, South Mongolia. Makuhari Messi Chiba, Japan JpGu-2018. http://www.jpgu.org/meeting_e2018

Taylor S.R., MeLennan S.M., 1985. The continental crust: its composition and evolution. Blackwell, Oxford.

Steiger R.H., Jager E., 1977. Subcommission on geochronology: convention of the use of decay constants in geo – and cosmochronology. Earth Planet, SciLett 36, p.359-362.

Siivola Jaako and Schimd Rolf 2007. List of Mineral Abbreviations

Sun S.S., McDonough G.A., 1989. Chemical and isotopic systematics of the oceanic basalts: Implications for mantle compositions and processes // In: Saunders A.D., Norry M.J. (Eds.) Magmatism in oceanic basins. Geological (London) Society Special Publication, Vol.428, p.313-345.

Sourijan S, Kennedy G.C, 1962. The system H20-NaCl at elevated temperatures and pressures. Am. Jour. Sci. 260, p.115-141.

Wilson M., 1989. Igneous petrogenesis. Umwin Hyman, London.

Wilkinson J.J. 2001. Fluid inclusions in hydrothermal ore deposit. Lithos Vol. 55. p. 229-279.

F.J.R.Syberg, A fourier method for the regional‐residual problem of potential fields, Geophysical prospecting, Vol. 20, Issue 1, pp. 47-75, (1972)

Spector, A. and Grant, F.S., Statistical models for interpreting aeromagnetic data, Geophysics, Vol.35, pp. 293-302, (1970)

Downloads

Published

2024-12-30

How to Cite

Bayaraa, Tamir, Oyunjargal Luvsannyam, Daariimaa Badarch, and Tseedulam Khuut. 2024. “Integrated Geophysical and Geochimestry Investigations at the Ondurnaran Lode Gold Deposit”. Geological Issues 23 (01):35-40. https://journal.num.edu.mn/geology/article/view/10019.

Issue

Section

Судалгааны өгүүллэг