Хаягдал NiMH батарейн электродоос гарган авсан нунтаг никел (Ni)-ийн цахилгаан химийн шинж чанарын судалгаа

Authors

  • Б.Ихбаяр Mongolian academy of sience, Institute of Physics and technology
  • Л.Сарантуяа ШУА-ийн Физик Технологийн Хүрээлэн, Энергийн судалгааны лаборатори
  • Н.Тогтох ШУА-ийн Физик, технологийн хүрээлэн, Энергийн судалгааны лаборатори
  • Б.Ану ШУА-ийн Физик, технологийн хүрээлэн, Энергийн судалгааны лаборатори
  • Г.Сэвжидсүрэн ШУА-ийн Физик, технологийн хүрээлэн, Энергийн судалгааны лаборатори

DOI:

https://doi.org/10.22353/physics.v36i605.9325

Keywords:

NiMH батарей, дахин боловсруулах, электрод, хэт потенциал, цахилгаан хими

Abstract

Энэхүү судалгааны ажилаар нунтаг никель дээжийг хаягдал NiMH батарейн катодын материалаас химийн ангижруулан тунадасжуулах аргын тусламжтайгаар гарган авч цахилгаан химийн шинж чанарыг судаллаа. Бидний гарган авсан нунтаг дээж нь талдаа төвтэй куб бүтэцтэй, Fm-3m огторгуйн бүлэгт харьялагдах цэвэр никель болох нь рентген дифракцийн хэмжилтийн үр дүнгээр батлагдсан. Харин гарган авсан дээжийн хэт потенциалыг тодорхойлохын тулд циклик-вольтамметрийн хэмжилтээр шугаман алхамт вольтамперметрийн муруйг байгуулахад нунтаг Ni дээжийн хэт потенциалийн утга нь хүчилтөрөгч болон устөрөгч ялгаруулах урвалын үед тус бүр 172 болон 338 мВ гарсан. Энэхүү утгууд нь хаягдал батарейнаас гарган авсан нунтаг Ni нь өндөр өртөг бүхий уламжлалт катализаторуудтай (RuO2) өрсөлөхүйц үр дүн үзүүлж байгааг харуулж байна.

In this study, we examined the electrochemical applications of powder nickel synthesized from the cathode material of spent NiMH batteries. X-ray diffraction measurements indicated that our synthesized powder sample exhibited phase purity and possessed a cubic structure with a space group of Fm-3m. Powder nickel samples attached to the surface of a glassy carbon electrode (GCE) are used as an electrochemical catalyst and showed overpotential values of 172 mV and 338 mV for HER and OER respectively. The overpotentials obtained for Ni microparticles were relatively closer to RuO2 conventional noble metal catalysts for electrochemical water splitting technologies. Therefore, we assume that further compositional, and morphological modification for powder nickel recovered from spent NiMH batteries can result in increased electrochemical activity toward water-splitting reactions.

Downloads

Download data is not yet available.

References

electricity, population and economic growth: The case of a developing South Asian resource-rich economy,” Energy Policy, vol. 132, pp. 771–781, 2019, doi: https://doi.org/10.1016/j.enpol.2019.05.054.

J. Wang and W. Azam, “Natural resource scarcity, fossil fuel energy consumption, and total greenhouse gas emissions in top emitting countries,” Geoscience Frontiers, vol. 15, no. 2, p. 101757, 2024, doi: https://doi.org/10.1016/j.gsf.2023.101757.

E. Lindstad, T. Ø. Ask, P. Cariou, G. S. Eskeland, and A. Rialland, “Wise use of renewable energy in transport,” Transp Res D Transp Environ, vol. 119, p. 103713, 2023, doi: https://doi.org/10.1016/j.trd.2023.103713.

I. Veza, M. Z. Asy’ari, M. Idris, V. Epin, I. M. Rizwanul Fattah, and M. Spraggon, “Electric vehicle (EV) and driving towards sustainability: Comparison between EV, HEV, PHEV, and ICE vehicles to achieve net zero emissions by 2050 from EV,” Alexandria Engineering Journal, vol. 82, pp. 459–467, 2023, doi: https://doi.org/10.1016/j.aej.2023.10.020.

F. Mohammadi and M. Saif, “A comprehensive overview of electric vehicle batteries market,” e-Prime - Advances in Electrical Engineering, Electronics and Energy, vol. 3, p. 100127, 2023, doi: https://doi.org/10.1016/j.prime.2023.100127.

D. A. Bertuol, A. M. Bernardes, and J. A. S. Tenório, “Spent NiMH batteries—The role of selective precipitation in the recovery of valuable metals,” J Power Sources, vol. 193, no. 2, pp. 914–923, 2009, doi: https://doi.org/10.1016/j.jpowsour.2009.05.014.

B. Ebin, M. Petranikova, and C. Ekberg, “Physical separation, mechanical enrichment and recycling-oriented characterization of spent NiMH batteries,” J Mater Cycles Waste Manag, vol. 20, no. 4, pp. 2018–2027, 2018, doi: 10.1007/s10163-018-0751-4.

S.-L. Lin et al., “Characterization of spent nickel–metal hydride batteries and a preliminary economic evaluation of the recovery processes,” J Air Waste Manage Assoc, vol. 66, no. 3, pp. 296–306, Mar. 2016, doi: 10.1080/10962247.2015.1131206.

V. P. Ananikov, “Nickel: The ‘Spirited Horse’ of Transition Metal Catalysis,” ACS Catal, vol. 5, no. 3, pp. 1964–1971, Mar. 2015, doi: 10.1021/acscatal.5b00072.

C. O. Iloeje et al., “A systematic analysis of the costs and environmental impacts of critical materials recovery from hybrid electric vehicle batteries in the U.S.,” iScience, vol. 25, no. 9, p. 104830, 2022, doi: https://doi.org/10.1016/j.isci.2022.104830.

I. Batsukh, M. Adiya, S. Lkhagvajav, S. Galsan, M. Gansukh, and M. Batmunkh, “Recovering Nickel-Based Materials from Spent NiMH Batteries for Electrochemical Applications,” ChemElectroChem, vol. 11, no. 12, p. e202400135, 2024, doi: https://doi.org/10.1002/celc.202400135.

K. Gothandapani et al., “Nickel nanoparticles supported on carbon surface as an electrocatalyst for hydrogen evolution reaction,” Int J Hydrogen Energy, vol. 52, pp. 1137–1146, 2024, doi: https://doi.org/10.1016/j.ijhydene.2023.08.027.

P. Acharya et al., “Chemical Structure of Fe–Ni Nanoparticles for Efficient Oxygen Evolution Reaction Electrocatalysis,” ACS Omega, vol. 4, no. 17, pp. 17209–17222, Oct. 2019, doi: 10.1021/acsomega.9b01692.

A. Seghiouer, J. Chevalet, A. Barhoun, and F. Lantelme, “Electrochemical oxidation of nickel in alkaline solutions: a voltammetric study and modelling,” Journal of Electroanalytical Chemistry, vol. 442, no. 1, pp. 113–123, 1998, doi: https://doi.org/10.1016/S0022-0728(97)00498-1.

N. Cong et al., “Nanoporous RuO2 characterized by RuO(OH)2 surface phase as an efficient bifunctional catalyst for overall water splitting in alkaline solution,” Journal of Electroanalytical Chemistry, vol. 881, p. 114955, 2021, doi: https://doi.org/10.1016/j.jelechem.2020.114955.

Y. Qin et al., “RuO2 electronic structure and lattice strain dual engineering for enhanced acidic oxygen evolution reaction performance,” Nat Commun, vol. 13, no. 1, p. 3784, 2022, doi: 10.1038/s41467-022-31468-0.

Downloads

Published

2024-12-26

How to Cite

batsukh, ikhbayar, L, S., N, T., Б, А., & Г, С. (2024). Хаягдал NiMH батарейн электродоос гарган авсан нунтаг никел (Ni)-ийн цахилгаан химийн шинж чанарын судалгаа. Scientific Transaction of the National University of Mongolia. Physics, 36(605), 6–11. https://doi.org/10.22353/physics.v36i605.9325

Most read articles by the same author(s)