УЛААНБААТАР ХОТЫН ГАЗАР ХӨДЛӨЛТИЙН АЮУЛЫН ҮНЭЛГЭЭГ ШИНЭЧИЛЭХ ШААРДЛАГА
Keywords:
Интерферометр, Хагарал, барилга, газар хөдлөлийн тэсвэржилтAbstract
During long-term erosion after a strong earthquake, cracks in the soil, which are traces of cracks, gradually disappear, making it difficult to identify. The rapid development of modern high technology has opened up unexpected new possibilities for the discovery and detailed study of such hidden structures.
Due to the fact that Ulaanbaatar is located in a seismically active region, the seismic resistance assessment of buildings was based on the seismic micro-region maps and active faults used at that time between 2009-2015. There is an urgent need to map new cracks in Ulaanbaatar that have been discussed in recent years, and to use them to redefine the seismic resistance of buildings. In this study, interferometer processing of Sentinel 1 satellite data for active sensing was used to identify new cracks with high spatial accuracy and re-evaluate the seismic resistance of buildings at a distance of 100-500 m.
Downloads
References
Al-Ashkar, A., Schlupp, A., Ferry, M., Ulziibat, M., Demberel, S. and Granet, M., 2013. Avdar, an active fault discovered near Ulaanbaatar,Capital of Mongolia: Impact on seismic hazard, EGU General Assembly, Vol. 15, Vienna, Austria, April 2013, EGU2013-10700.
Baek, J., Sang-Wan, K., Hyuck-Jin, P., Hyung- Sup, J., Ki-Dong, K., Jeong, W.K., 2008. Analysis of ground subsidence in coal mining area using SAR interferometry, Canadian Journal of Remote Sensing, 12: 277-284
Bayasgalan, A., Jackson, J. A., 1999. A re-assessment of the fault- ing in the 1967 Mogod earthquakes in Mongolia, Geophys. J. Int. 138, 784–800.
БНбД 22-04-16, 2016, “Газар хөдлөлийн бичил мужлалын зураг ашиглах норм, дүрэм”
Delgado Blasco, J.M., Michael F., Chris S., Andrew H., 2019. Measuring urban subsidence in the rome metropolitan area (italy) with sentinel-1 snap-stamps persistent scatterer interferometry. Remote Sensing, 11: https://doi.org/10.3390/ rs11020129
Demberel, S., Imaev, V. S., Rogozhin, E. A., Smekalin, O. P., Ulzibat, M. and Chipizubov, A. V., 2013. To clarify the seismic hazard for Ulaanbaatar-city (Mongolia), Seismol. Issues 40, 19–32.
Ferry, M.A., Schlupp, A., Ulzibat, M., Marc, M., Simon, F., Baatarsuren, G., Erdenezula, D., Munkhsaikhan, A., Ankhtsetseg, D., 2010. Tectonic morphology of the Hustai fault (Northern Mongolia), A source of seismic hazard for the city of Ulaanbaatar, EGU General Assembly, Vienna, Austria, May 2010, 11122.
Foumelis, M., Delgado B., Desnos Y., Engdahl M., Fernandez D.,Veci L., Lu J., Wong C., 2018. ESA SNAP – StaMPS Integrated Processing for Sentinel-1 Persistent Scatterer Interferometry. 10.13140/ RG.2.2.25803.90405.
Gong, W., Meyer, F., Webley, P.W. and Lu, Z., 2011. Methods of insar atmosphere correction for volcano activity monitoring, Geophysical Research Letters, 102(8).11- 17:
Hooper, A., 2008. A multi-temporal insar method incorporating both persistent scatterer and small baseline approaches, Geophysical Research Letters, 35(16):
Hooper, A., Segall, P. and Zebker, H.A., 2007. Persistent scatterer InSAR for crustal deformation analysis, with application to Volcán Alcedo, Galápagos, Journal of Geophysical Research, 112:
Imaev, V. S., Smekalin, O. P., Strom, A. L., Chipizubov, A. V. and Syas’ko, A. A., 2012. Seismic-hazard assessment for Ulaanbaatar (Mongolia) on the basis of seismogeological studies, Russ. Geol. Geophys. 53, 906–915.
Schlupp, A., Ferry, M., Munkhuu, U., Demberel, S. and Al-Ashkar, A., 2013. Active faults system and related potential seismic events near Ulaanbaatar, capital of Mongolia, EGU General Assembly, Vienna, Austria, April 2013, EGU2013- 7821.
Schlupp, A., Ferry, M., Ulziibat, M., Baatarsuren, G., Munkhsaikhan, A., Bano, M., Dujardin, J.M., Nyambayar, Ts., Sarantsetseg, L., Munschy, M., 2012. Investigation of active faults near Ulaanbaatar: Implication for seismic hazard assessment, Proc. 9th General Assembly of Asian Seismological Commission, Ulaanbaatar, Mongolia, Extended Abstract, 265–267.
Smekalin, O. P., Imaev, V. S. and Chipizubov, A. V. 2013. Paleoseismic studies of the Hustai Fault zone (Northern Mongolia), Russ. Geol. Geophys. 54, 724–733.
Sun, Q., Zhang, L., Ding, X.L., Hu, J., Li, Z.W., Zhua, J.J., 2015. Slope deformation prior to zhouqu, china landslide from insar time series analysis, Remote Sensing of Environment, 156: 45-57
Suzuki Y., Nakata, T., Watanabe, M., Battulga, S., Enkhtaivan, D., Demberel, S., Odonbaatar, Ch., Bayasgalan, A., Badral, T., 2020. Discovery of Ulaanbaatar Fault: A New Earthquake Threat to the Capital of Mongolia, Seismological Research Letters, 92 (1): 437–447.
Tseedulam, Kh., 2009. Application of Polarimetric GPR to detection of subsurface objects, Tohoku University, 117p
Walker, R. T., Molor, E., Fox, M. and Bayasgalan, A., 2008. Active tectonics of an apparently aseismic region: Distributed active strike-slip faulting in the Hangay Mountains of central Mongolia, Geophys. J. Int. 174, 1121–1137.
Yagüe-Martínez, N., Pau ,P., Fernando, R.G., Ramon, B., Robert, S., Dirk, G., Michael, E., Richard, B., 2016. Interferometric processing of Sentinel-1 TOPS data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4): 2220-2234
ООФГХ. https://iag.mn/mn/index. php?pid=33&nid=66 2015 102(8).11-17.
Нямбаяр, Ц., Bano, M., Schlupp, A., Өлзийбат, М., Цээдулам, Х., 2018. Идэвхтэй хагарлын төрлийг георадарын (GPR)–ийн тандан судалгаагаар тодорхойлсон ажлын үр дүн, Геофизик ба Одон Орон судлал №5, x. 13-22
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Геологийн асуудлууд
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.