ГЕОРАДАРЫН (GPR) –ИЙН ТАНДАН СУДАЛГААГААР ИДЭВХИТЭЙ ХАГАРЛЫН ПАРАМЕТРҮҮДИЙГ НАРИЙВЧЛАХ НЬ

Authors

  • Нямбаяр Ц. ШУА, Одон орон геофизикийн хүрээлэн
  • Maksim Bano University of Strasbourg/east, Strasbourg, France
  • Цээдулам Х. ШУТИС, Геологи Уул Уурхайн Сургууль

Keywords:

Георадар (GPR), Дифференциал GPS, зөрөл хагарал, шилжил хагарал, палео-суваг, мөргөцөг

Abstract

Seismic activity around the capital city of Ulaanbaatar has been increasing significantly since 2005. This activity is observed in the vicinity of Emeelt and is located at just over 10 km from the residential area of Ulaanbaatar, which is a high risk. As part of the seismic activity survey near Ulaanbaatar, we identified several active faults and began to study them in detail in 2010 year. The length and geomorphology of these active faults indicate a strong earthquake of magnitude 6.5-7.5.
After the Paleo-earthquake, the loose soil around the fault has undergone a process of geological erosion, which has significantly altered the traces and geomorphology of the faults on the soil of the fault plane. Therefore, the GPR sensing method for determining the fault parameters in detail, mapping and reconfiguration technology has been tested and proven to be widely used in the future.
In 2010-2019, we conducted detailed GPR surveys on active faults around Ulaanbaatar and in the central region to accurately determine their parameters. This article presents the results of using GPR 250MHz, 500MHz, and 50MHz antenna measurements in combination with differential GPS system measurements to determine how active fault parameters can be accurately determined by their results.

Downloads

Download data is not yet available.

References

Aki, K. (1966). Generation and propagation of G waves from the Niigata earthquake of June 16, 1964. Part 2. Estimation of earthquake moment, released energy, and stress–strain drop from the G wave spectrum. Bulleting Earthquake Research Institute, хуудсд. 44: 73-88.

Al Ashkar, A. (2015). Tectonique active de la région d’Oulan Bator, Mongolie: Analyse morpho-tectonique et paléosismologique des failles actives de Sharkhai et Avdar. Strasbourg, France: ED413, UM7516, University of Strasbourg.

Antoine, S., Matthieu, F., Ulziibat, M., Baatarsuren, G., Munkhsaikhan, A., Maksim, B., . . . Demberel, S. (2012). Investigation of active faults near Ulaanbaataar. Implication for seismic hazard assesment. The 9th General Assembly of Asian Seismological Commission (хуудсд. 265-267). Ulaanbaatar, Mongolia: International scientific cooperation for prevention and mitigation seismic disaster.

Bayasgalan, A., & Jackson, J. (1999b). A re-assessment of the faulting in the 1967 Mogod earthquake in Mongolia. Geophysical Journal International, 138: 784-800.

Beauprêtre, S., Garambois, S., Manighetti, I., Malavieille, J., Sénéchal, G., Chatton, M., . . . Romano, C. (2012). Finding the buried record of past earthquakes with GPR based palaeoseismology: a case study on the Hope fault, New Zealand. Geophysical Journal International, 189: 73-100.

Calais, E., Dong, L., Wang, M., Shen, Z., & Vergnolle, M. (2006). Continental deformation in Asia from a combined GPS solution. Geophysical Research Letter, 33(24).

Calais, E., Vergnolle, M., Sankov, V., Lukhney, A., Miroshnitchenko, A., Amarjargal, S., & Déverchère, J. (2003). GPS measurements of crustal deformation in the Baïkal-Mongolia area (1994-2002): Implication for current kinematics of Asia. Journal of Geophysical Reasearch, 108: 2051.

Cassidy, N. (2009). Theory and Applications, chapter Ground Pe- netrating Radar data processing, modelling, and analysis. H. Jol-Д, Ground Penetrating Radar Theory and Applications (хуудсд. 141-176). Amsterdam, Netherland: Elsevier.

Davis, J. L., & Annan, A. P. (1989). Ground penetrating radar for high resolution mapping of soil and rock stratigraphy. Geophysical Prospecting, 37: 531-551.

Dentith, M., O’Neill, A., & Clark, D. (2010). Ground penetrating radar as a means of studying palaeofault scarps in a deeply weathered terrain, southwestern Western Australia. Journal Applied Geophysics, 72: 92-101.

dePolo, C. M., & Slemmons, D. B. (1990). Estimation of earthquake size for seismic hazards. E. L. Krinitsky, & D. B. Slemmons-Д, Neotectonics in Earthquake Evaluation (хуудсд. 8: 1-28). Boulder, Colorado: Geological Society of America.

Ferry, M., Meghraoui, M., Girard, J. F., Rockwell, T. K., Kozaci, O., Akyuz, S., & Barka, A. (2004). . Ground-penetrating radar investigations along the North Anatolian fault near Izmit, Turkey. Geological Society of America, 32: 85-88.

Ferry, M., Schlupp, A., Ulziibat, M., Munschy, M., Fleury, S., Baatarsuren, G., . . . Ankhtsetseg, D. (2010). Tectonic Morphology of the Hustai Fault (Northern Mongolia), A Source of Seismic Hazard for the city of Ulaanbaatar. EGU General Assembly. Vienna, Austria.

Girard, J. F. (2002). Imagerie géoradar et modélisation des diffractions multiples. Strasbourg: Université Louis Pasteur.Hanks, T. C., & Kanamori, H. (1979). A moment magnitude scale. Journal Geophysical Research, 84: 2348-2350.

Heincke, B., Green, A. G., van der Kruk, J., & Horstmeyer, H. (2005). Acquisition and processing strategies for 3D georadar surveying a region characterized by rugged topography. Geophysics, 70: K53-K61.

Jean-Remi, D. (2014). Imagerie géoradar (GPR) en milieu hétérogène Application aux failles actives en Mongolie et aux dépôts pyroclastiques du Tungurahua (Equateur). Strasbourg, France: IPGS, UMR7516, University of Strasbourg.

Jol, H. M. (1995). Ground-penetrating radar antennae frequencies and transmitter powers compared for penetration depth, resolution and reflection continuity. Geophysical Prospecting, 43: 693-709.

Jol, H. M. (2009). Ground Penetrating Radar Theory and Applications. Elsevier. Judith, M. (2013). Analyse géomorphologique (GPS) et GPR pour l’étude des failles actives en Mongolie. Strasbourg, France: IPGS, EOST, University of Strasbourg.

Kanamori, H. (1977). The energy release in great earthquakes. Journal Geophysical Research, 82: 2981-2987.

Lehmann, F., & Green, A. G. (2000). Topographic migration of georadar data: implications for acquisition and processing. Geophysics, 65(3): 836-848.

McClymont, A. F., Green, A. G., Kaiser, A., Horstmeyer, H., & Langridge, R. M. (2010). Shallow fault segmentation of the Alpine fault zone, New Zealand, revealed from 2- and 3-D GPR surveying. Journal Applied Geophysics, 70(4): 343-354.

McClymont, F. A., Green, G. A., Streich, R., Horstmeyer, H., Tronicke, J., Nobes, C. D., . . . Langridge, R. (2008). Visualization of active faults using geometric attributes of 3D GPR data: An example from the Alpine Fault Zone, New Zealand. GEOPHYSICS, 73(2): 1MA-Z29.

Munkhsaikhan, A. (2016). Seismic activity near Ulaanbaatar: Implication for seismic hazard assessment. Strasbourg: IPGS, UMR-716, Doctoral School of Earth and Environmental Sciences - ED 413.

Дугармаа, Т., Antoine, S., Баясгалан, А., Өлзийбат, М., Одонбаатар, Ч., Анхцэцэг, Д., . . . Баярсайхан, Ч. (2006). Монгол улсын нийслэл Улаанбаатар хотын газар хөдлөлийн аюулын үнэлгээ. Газар хөдлөлийн бичил мужлалын зураг. Улаанбаатар хот: Одон Орон Геофизикийн Судалгааны Төв.

Нямбаяр, Ц., Maksim, B., Antoine, S., Өлзийбат, М., & Цээдулам, Х. (2018). Идэвхитэй хагарлын төрлийг Георадарын (GPR)-ийн тандан судалгаагаар тодорхойлсон ажлын үр дүн. Геофизик ба Одон орон судлал, 5: 65.

Downloads

Published

2022-03-16

How to Cite

Ц., Нямбаяр, Maksim Bano, and Цээдулам Х. 2022. “ГЕОРАДАРЫН (GPR) –ИЙН ТАНДАН СУДАЛГААГААР ИДЭВХИТЭЙ ХАГАРЛЫН ПАРАМЕТРҮҮДИЙГ НАРИЙВЧЛАХ НЬ”. Geological Issues 20 (1):106-18. https://journal.num.edu.mn/geology/article/view/858.

Issue

Section

Судалгааны өгүүллэг