ТЭЛМЭН НУУРЫН МОРФОМЕТРИЙН ОНЦЛОГ, ХОТГОРЫН МОРФОЛОГИ, ГАРАЛ ҮҮСЭЛ
Keywords:
Хангайн нуруу, Тэлмэн нуур, морфометрийн шинжилгээ, хотгорын гарал үүсэл, хагаралAbstract
Studies of paleoclimate change based on the sediments of Lake Telmen have been conducted. We present the morphometric characteristics, depression origin of the Telmen Lake, Western Mongolia. In the study, the morphometric analysis, spatial improvement method, hypsometric curve method, Geophysical magnetic mapping, and AWEI index were used to determine the pattern of lake depressions. The depression of the Telmen Lake formed as a blocksubsidence by faults. Lake water is likely to relate to underground water, which level cutted by fault. Climate change and permafrost studies show that water area and volume of the Telmen Lake are not changed through Central Asia warming and drying in last two decades.
Downloads
References
Алтанболд, Э., Уламбадрах, Х., 2022. Монгол орны нуурын хотгорын гарал үүсэл, морфологи. Улаанбаатар, МУИС Пресс, х.78-81.
Амарсайхан, Д., Ганзориг, М., 2010. Зайнаас Тандан Судлал болон Дүрс мэдээнд тоон боловсруулалт хийх зарчмууд, Улаанбаатар, х.55-61.
Даариймаа, Б., Баатарчулуун, Ц., 2017. Монгол орны тектоник хагарлын системийг геосоронзон гажлын орноор үнэлсэн дүн. Геологийн асуудлууд, 15, х. 58-67.
Даваа, Г., 2018. Газар, Сансрын мэдээлэлд тулгуурласан Монгол Орны Нууруудын усны нөөцийн үнэлгээ, Түүнд байнгын хяналтшинжилгээ хийх боломжийн судалгаа. Зөвлөх үйлчилгээний ажлын тайлан. Улаанбаатар, х. 54-58.
Даш, Д., Мандах, Н., 2011. Газарзүйн шинжлэх ухааны хөгжлийн түүх, Улаанбаатар, х. 365-410.
Дуламсүрэн, Д., 2022. Монгол орны улирлын уур амьсгалын өнөөгийн өөрчлөлт, Уур амьсгалын өөрчлөлтийн үндэсний 4 дүгээр тайлан, Улаанбаатар. х.6-14.
Лупян, Е.А., Константинова, А.М., Кашницкий, А.В., Ермаков, Д.М., Саворский, В.П., Панова, О.Ю., Бриль, А.А., 2022. Возможности организации долговременного дистанционного мониторинга крупных источников антропогенных загрязнений для оценки их влияния на окружающую среду. Современные проблемы дистанционного зондирования Земли из космоса, 19(1), с.193-213.
Цэрэнсодном, Ж., 1971. Монгол орны нуур, Улаанбаатар, х. 75-89.
Цэрэнсодном, Ж., 2000. Монгол орны нуурын каталог (цэс). Улаанбаатар, Шувуун Саарал хэвлэлийн үйлдвэр, х. 66-99.
Пүрэвдагва, Х., 2022. Усны нөөцийн нөлөөллийн үнэлгээ, Уур амьсгалын өөрчлөлтийн үндэсний 4 дүгээр тайлан, Улаанбаатар, х.31-45.
Эрдэнэчимэг, Д., Болдбаатар, Г., Энхбаяр, Д., Дамдинжав, Б., Тайванбаатар, Ц., Оюунгэрэл, Н., 2018. Монгол Улсын Геологийн зураг, 1:500000, Геологийн Судалгааны Төв (ТӨҮГ)-н Геомэдээллийн сан-2013 төсөл.
Acharya, T.D., Subedi, A., Lee, D.H., 2018. Evaluation of water indices for surface water extraction in a Landsat 8 scene of Nepal. Sensors 18(8), 2580. https://doi.org/10.3390/s18082580
Dingjun, L., Altanbold, E., Batsuren, D., Tuvshin, G., Yumchmaa, G., Boldbayar, R., Gansukh, Y., 2023. Changes in the area of lakes in different natural regions of Mongolia and climate effect: Монгол орны байгалийн янз бүрийн бүсүүд дэх нууруудын талбайн өөрчлөлт ба уур амьсгалын нөлөө. Geographical Issues 23(01), 4-21.
Enkhbold, A., Khukhuudei, U., Kusky, T., Tsermaa, B., Doljin, D., 2022a. Depression morphology of Bayan Lake, Zavkhan province, Western Mongolia: implications for the origin of lake depression in Mongolia. Physical Geography 43(6), 727-752. https://doi.org/10.1080/02723646.2021.1899477
Enkhbold, A., Dorjsuren, B., Khukhuudei, U., Yadamsuren, G., Badarch, A., Dorjgochoo, S., Gonchigjav, Y., Nyamsuren, O., Ragchaa, G., Gedefaw, M., 2022b. Impact of faults on the origin of lake depressions: a case study of Bayan Nuur depression, Northwest Mongolia, Central Asia. Geogr Fis Din Quat 44, 69-82. https://doi.org/10.4461/ GFDQ.2021.44.5
Enkhbold, A., Khukhuudei, U., Kusky, T., Chun, X., Yadamsuren, G., Ganbold, B., Gerelmaa, T., 2022c. Morphodynamic development of the Terkhiin Tsagaan Lake Depression, Central Mongolia: Implications for the relationships of Faulting, Volcanic Activity, and Lake Depression Formation. Journal of Mountain Science 19(9), 2451-2468. https://doi.org/10.1007/s11629-021-7144-1
Enkhbold, A., Khukhuudei, U., Doljin, D., 2021. Morphological classification and origin of lake depressions in Mongolia. Proceedings of the Mongolian Academy of Sciences, 35-43. https://doi.org/10.5564/pmas.v61i02.1758
Feyisa, G.L., Meilby, H., Fensholt, R., Proud, S.R., 2014. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote sensing of environment 140, 23-35. https://doi.org/10.1016/j.rse.2013.08.029
Fisher, A., Flood, N., Danaher, T., 2016. Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sensing of Environment, 175, pp.167-182. https://doi.org/10.1016/j.rse.2015.12.055
Florinsky, I.V., 1996. Quantitative topographic method of fault morphology recognition. Geomorphology, 16(2), pp.103-119. https://doi.org/10.1016/0169-555X(95)00136-S
Fowell, S.J., Hansen, B.C., Peck, J.A., Khosbayar, P., Ganbold, E., 2003. Mid to late Holocene climate evolution of the Lake Telmen Basin, North Central Mongolia, based on palynological data. Quaternary Research 59(3), 353-363. https://doi.org/10.1016/S0033-5894(02)00020-0
Gilvear, D., Bryant, R., 2016. Analysis of remotely sensed data for fluvial geomorphology and river science. In book: Tools in fluvial geomorphology, pp.103-132. https://doi.org/10.1002/9781118648551.ch6
Hassen, M.B., Deffontaines, B. and Turki, M.M., 2014. Recent tectonic activity of the Gafsa fault through morphometric analysis: Southern Atlas of Tunisia. Quaternary International, 338, pp.99-112. https://doi.org/10.1016/j.quaint.2014.05.009
Huang, W., Duan, W., Chen, Y., 2022. Unravelling lake water storage change in Central Asia: Rapid decrease in tail-end lakes and increasing risks to water supply. Journal of Hydrology 614, 128546. https://doi.org/10.1016/j.jhydrol.2022.128546
Jacques, P.D., Salvador, E.D., Machado, R., Grohmann, C.H. and Nummer, A.R., 2014. Application of morphometry in neotectonic studies at the eastern edge of the Paraná Basin, Santa Catarina State, Brazil. Geomorphology, 213, pp.13-23. https://doi.org/10.1016/j. geomorph.2013.12.037
Klinge, M., Schneider, F., Dulamsuren, C., Arndt, K., Bayarsaikhan, U., Sauer, D., 2021. Interrelations between relief, vegetation, disturbances, and permafrost in the forest-steppe of central Mongolia. Earth Surface Processes and Landforms 46(9), 1766-1782. https://doi.org/10.1002/esp.5116
Liu, H., Chen, Y., Ye, Z., Li, Y., Zhang, Q., 2019. Recent lake area changes in Central Asia. Scientific reports 9(1), 16277. https://doi.org/10.1038/s41598-019-52396-y
Nixon, M., Aguado, A., 2019. Feature extraction and image processing for computer vision. Academic press, pp.344-356. https://doi.org/10.1016/C2011-0-06935-1
Peck, J.A., Khosbayar, P., Fowell, S.J., Pearce, R.B., Ariunbileg, S., Hansen, B.C., Soninkhishig, N., 2002. Mid to Late Holocene climate change in north central Mongolia as recorded in the sediments of Lake Telmen. Palaeogeography, Palaeoclimatology, Palaeoecology 183(1-2), 135-153. https://doi.org/10.1016/S0031-0182(01)00465-5
Strahler, A.N., 1952. Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America Bulletin 63(11), 1117-1142. https://doi.org/10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2
Struck, J., Bliedtner, M., Strobel, P., Taylor, W., Biskop, S., Plessen, B., Klaes, B., Bittner, L., Jamsranjav, B., Salazar, G., Szidat, S., 2022. Central Mongolian lake sediments reveal new insights on climate change and equestrian empires in the Eastern Steppes. Scientific reports 12(1), 2829. https://doi.org/10.1038/s41598-022-06659-w
Sumiya, E., Dorjsuren, B., Yan, D., Dorligjav, S., Wang, H., Enkhbold, A., Weng, B., Qin, T., Wang, K., Gerelmaa, T., Dambaravjaa, O., 2020. Changes in water surface area of the lake in the Steppe Region of Mongolia: A case study of Ugii Nuur Lake, Central Mongolia. Water 12(5), 1470. https://doi.org/10.3390/w12051470
Theilen-Willige, B., 2022. Geomorphologic and geologic analysis of satellite data of the Betic and Rif Orogenic Belts in the Western Mediterranean Sea. European Journal of Environment and Earth Sciences 3(2), 73-79. https://doi.org/10.24018/ejgeo.2022.3.2.276
Trifonova, P., Simeonova, S., Solakov, D., Metodiev, M., 2012. Exploring seismicity in Bulgaria using geomagnetic and gravity data. Comptes rendus de l’Académie bulgare des Sciences, 65(5).
Tungalag, N., Ganbat, B., Baasansuren, S., Orgil, G., Enkhhtsatsral, D. and Batmunkh, M., 2023. The Paleozoic Granitic Rocks from the Telmen Complex in the Tarvagatai Block, Central Mongolia: Petrogenesis, U-Pb geochronology, and its tectonic implications. Mongolian Geoscientist, 28(56), pp.1-13. https://doi.org/10.5564/mgs.v28i56.2427
Willgoose, G., Hancock, G., 1998. Revisiting the hypsometric curve as an indicator of form and process in transport-limited catchment. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Group 23(7), 611-623. https://doi.org/10.1002/(SICI)1096-9837(199807)23:7<611::AIDESP872>3.0.CO;2-Y
Yamkhin, J., Yadamsuren, G., Khurelbaatar, T., Gansukh, T.E., Tsogtbaatar, U., Adiya, S., Yondon, A., Avirmed, D., Natsagdorj, S., 2022. Spatial distribution mapping of permafrost in Mongolia using TTOP. Permafrost and Periglacial Processes 33(4), 386-405. https://doi.org/10.1002/ppp.2165
Zhang, Y., An, C.B., Zheng, L.Y., Liu, L.Y., Zhang, W.S., Lu, C., Zhang, Y.Z., 2023. Assessment of lake area in response to climate change at varying elevations: A case study of Mt. Tianshan, Central Asia. Science of The Total Environment 869, 161665. https://doi.org/10.1016/j.scitotenv.2023.161665
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Геологийн асуудлууд
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.