A fluid inclusion and stable-isotope study of hydrothermal vein mineralization, Schwarzwald district, Germany

Authors

  • Baatartsogt Baldorj The Nuclear Energy Comission,Executive office, Ulaanbaatar, Mongolia
  • Thomas Wagner University of Tubingen, Germany
  • Gregor Markl University of Tubingen, Germany

Keywords:

Schwarzwald, fluid inclusion, Variscan, quartz, veins

Abstract

A combined fluid inclusion and stable isotope study has been carried out on over 180 individual samples from 89 post-Variscan hydrothermal veins (Pb-Zn-Cu-bearing fluorite-barite-quartz veins, Co-Ni-Ag-Bi-U-bearing barite-fluorite-quartz veins and barren barite-fluorite-quartz veins) from the Schwarzwald district, Germany. The salinities of fluid inclusions in post-Variscan primary fluorite, calcite, barite and quartz are in the range of 22–25 wt.% equivalent (eqv.) NaCl, and the eutectic temperatures range between –57 and –45°C, indicating the presence of H2O-NaCl-CaCl2 fluids. Homogenization temperatures vary from 130 to 180°C. A low-salinity fluid (0 to 15 wt.% eqv. NaCl) was observed in some late stage fluorite, calcite and quartz samples, which were trapped similar temperature, range of high salinity fluids.

Raman microprobe analyses show that the only detectable volatile in the vapour is CO2. Almost all δ18O (n=86) measurements of quartz from the fluorite-bearing post-Variscan veins range between +11.1 and +20.9 ‰. The calculated δ18OH2O values are between –11.0 and +4.4 ‰, using known quartz-water fractionation and fluid inclusion homogenization temperatures. The δ18OH2O values of directly extracted fluid inclusion water of fluorites range from –11.6 to +1.1 ‰, very consistent with the calculated values. The δD values of fluid inclusion water in calcites (extracted from primary and late calcite samples) lie in a narrower range between –26 and –15 ‰. The extracted fluid inclusion water from quartz samples has significantly more variable δD values between –63 and +9 ‰. The δ13C and δ18O values of fluid inclusion gas (CO2) range between –21.4 and –6.7 ‰ and between –16.3 to –7.1 ‰, respectively.

Calculations for fluorite-barite-quartz veins combining oxygen isotope equilibria with microthermometric data result in quartz precipitation temperatures of 120–170°C at pressures between 0.3 to 0.5 kbar. The δ18OH2O and δD data, particularly the observed wide range in hydrogen isotopic compositions, indicate that the hydrothermal mineralization formed through large-scale mixing of a basement-derived saline NaCl-CaCl2 brine with meteoric water.

Downloads

Download data is not yet available.

References

Baatartsogt B, Schwinn G, Wagner T, Taubald H, Beitter T, Markl G (2006) Contracting paleofluid systems in the continental basement: fluid inclusion and stable isotope study of hydrothermal vein mineralization, Schwarzwald district, Germany. Geofluids, 7, 123-147.

Behr HJ, Horn EE (1984a) Quarzbildung und Verkieselungsprozesse in den Karbonatkomplexen des Rheinischen Schiefergebirges. In: Postvaristische Gangmineralisationen in Mitteleuropa. G.D.M.B. (Ges. Dtsch. Mitallhütten-Bergleute), 41, 27-45.

Behr HJ, Horn EE (1984b) Unterscheidungskriterien für Mineralisationen des varistischen und postvaristischen Zyklus, die aus der Analyse fluider Einschlüsse gewinnbar sind. In: Postvaristische Gangmineralisationen in Mitteleuropa. G.D.M.B. (Ges. Dtsch. Mitallhütten-Bergleute), 41, 255-269.

Behr HJ, Horn EE, Lüders V, Reutel Chr (1984) Genetische Schlussfolgerung für die Gangmineralisationen des Harzes aus der Untersuchung fluider Einschlüsse. Fortschr. Mineralogie, 62, 18.

Behr HJ, Gerler J (1987) Inclusions of sedimentary brines in post-Variscan mineralizations in the Federal Republic of Germany: A study by Neutron Activation Analysis. Chemical Geology, 61, 65-77.

Bodnar RJ, Vityk MO (1994) Interpretation of microthermometric data for H2O-NaCl fluid inclusions. in Fluid Inclusions in Minerals, Methods and Applications, B. De Vivo and M. L. Frezzotti, eds., pub. by Virginia Tech, Blacksburg, VA, 117-130.

Borisenko AS (1977) Study of the salt composition of solutions in gas-liquid inclusions in minerals by the cryometric method. Soviet Geoogy and Geophysics, 18. 11-19.

Boiron MC, Cathelineau M, Banks DA, Fourcade S, Vallance J (2003) Mixing of metamorphic and surficial fluids during the uplift of the Hercynian upper crust: consequences for gold deposition. Chemical Geology, 194, 119-141.

Brown PE, Hagemann SG (1995) Fluid inclusion data reduction and interpretation using MacFlinCor on the Macintosh. XIII ECROFI Symposium, Barcelona, Boletin de la Sociedad Espaola de Mineralogia, 18-1, 32-33.

Burke EAJ (2000) Raman microspectrometry of fluid inclusions. Lithos, 55, 139-158.

Canals A, Cardellach E (1993) Strontium and sulfur isotope geochemistry of low-temperature barite-fluorite veins of the Catalonian Coastal Ranges (NE Spain): a fluid mixing model and age constraints. Chemical Geology, 104, 269-280.

Charef A, Sheppard SMF (1988) The Malines Cambrian carbonate-shale-hosted Pb-Zn deposit, France: thermometric and isotopic (H,O) evidence for pulsating hydrothermal mineralization. Mineralium Deposita, 23, 86-95.

Clauer N, O’Neil JR, Furlan S (1995) Clay minerals as record of temperature conditions and duration of thermal anomalies in the Paris basin, France. Clays and Clay Minerals, 30, 1-13.

Craig H (1957) Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide. Geochimica et Cosmochimica Acta, 12, 133-149.

Craig H (1961) Standards for reporting concentrations of deuterium and oxygen 18 in natural waters. Science, 133, 1833-1834.

Craig H (1961) Isotopic variations in meteoric waters. Science, 133, 1702-1703.

Davis DW, Lowenstein TK, Spencer RJ (1990) Melting behaviour of fluid inclusions in laboratory-grown halite crystals in the systems NaCl-H2O, NaCl-KCl-H2O, NaCl-MgCl2-H2O, and NaCl-CaCl2-H2O. Geochimica et Cosmochimica Acta, 54, 591-601.

Franzke HJ, Ahrendt H, Kurz S, Wemmer K (1996) K-Ar Datierungen von Illiten aus Kataklasiten der Floßbergstörung im südöstlichen Thüringer Wald und ihre geologische Interpretation. Zeitschrift für geologische Wissenschaften, 24, 441-456.

Frape SK, Fritz P (1987) Geochemical trends for groundwaters from the Canadian Shield. In Saline Water and Gases in Crystalline rocks (eds P. Fritz and S.K. Frape). Geol. Assoc. Canad. Spec. Pap. 33, 19-38.

Friedman I (1953) Deuterium content of natural water and other substances. Geochimica et Cosmochimica Acta, 4, 89-103.

Fritz P, Frape SK (1982) Saline groundwaters in the Canadian Shield. A first overview. Chem. Geol. 36, 179-190.

Hein UF (1993) Synmetamorphic Variscan siderite mineralization of the Rhenish Massif, Central Europe. Mineralogical Magazine, 57, 451-467.

Hoefs J, Emmermann R (1983) The Oxygen Isotope Compostion of Hercynian Granites and Pre- Hercynian Gneisses from the Schwarzwald, SW Germany. Contributions to Mineralogy and Petrology, 83, 320-329.

Lippolt HJ, Kirsch H (1994) Isotopic Investigation of Post-Variscan Plagioclase Sericitization in the Schwarzwald Gneiss Massif. Chemie der Erde, 54, 179-198.

Lippolt HJ, Werner O (1994) Die Genetische Aussage von Blei- Isotopen- Verhältnissen in Bleiglanzen des Bergbaureviers Freiamt- Sexau, Mittlerer Schwarzwald. In: D.H. Storch and W. Werner (Editors), Die Erz- und Mineralgänge im alten Bergbaurevier “Freiamt- Sexau”, Mittlerer Schwarzwald. Abhandlungen des Geologischen Landesamtes Baden-Württemberg, 14, 191-205.

Lodemann M, Fritz P, Wolf M, Ivanovich M, Hansen BT, Nolte E (1997) On the origin of saline fluids in the KTB (continental deep drilling project of Germany). Applied Geochemistry, 12, 831-849.

Matsuhisa Y, Goldsmith HJR, Clayton RN (1979) Oxygen isotopic fractionation in the system quartz-albite-anorthite-water. Geochimica et Cosmochimica Acta, 43, 1131-1140.

Meshik AP, Lippolt HJ, Dymkov YM (2000) Xenon geochronology of Schwarzwald pitchblendes. Mineralium Deposita, 35, 190-205.

Metz R, Richter M, Schürenberg H (1957) Die Blei-Zink-Erzgänge des Schwarzwaldes. Beihefte Geologisches Jahrbuch, 29, 1-277.

Meyer M, Brockamp O, Clauer N, Renk A, Zuther M (2000) Further evidence for a Jurassic mineralizing event in central Europe. K-Ar dating of geothermal alteration an fluid inclusion systematics in wall rocks of the Käferteige fluorite vein deposit in the northern Black Forest, Germany. Mineralium Deposita, 35, 754-761.

Munoz M, Premo WR, Courjault-Rade (2005) Sm-Nd dating of fluorite from the worldclass Montroc fluorite deposit, southern Massif Central, France. Mineralium Deposita, 39, 970-975.

Nurmi PA, Kukkonen IT, Lahermo PW (1988) Geochemistry and origin of saline groundwaters in the Fennoscandian Shield. Appl. Geochem. 3, 185-203.

Ohmoto H. Goldhaber MB (1997) Sulfur and carbon isotopes. In: Geochemistry of Hydrothermal Ore Deposits (ed. H.L. Barnes), 3rd ed., Wiley, New York, 517-611.

Ritter J (1995) Genese der Mineralistation Herrmanngang im Albtalgranit, SE-Schwarzwald und Wechselwirkungen mit dem Nebengestein. In: Puchelt (Editor), Karlsruher Geochemische Hefte, 8, 1-132.

Roedder E (1984) Fluid inclusions. Reviews Mineralogy, 12, 644.

Roedder E (1979) Fluid Inclusions as Samples of Ore Fluids. Geochemistry of Hydrothermal Ore Deposits. Wiley. 684.

Rumble D III, Hoering TC (1994) Analysis of oxygen and sulfur isotope ratios in oxide and sulfide minerals by spot heating with a carbon dioxide laser in a fluorine atmosphere. Account of Chemical Research, 27, 237-241.

Schwinn G, Wagner T, Baldorj B, Markl G (in press) Quantification of mixing processes in ore-forming hydrothermal systems by combination of stable isotope and fluid inclusion analyses. Geochimica et Cosmochimica Acta, 70, 965-982

Segev A, Halicz L, Lang B, Steinitz G (1991) K-Ar dating of manganese minerals from the Eisenbach region, Black Forest, southwest Germany. Schweizerische Mineralogische und Petrogaphische. Mitteilungen, 71, 101-114.

Simon K, Hoefs J (1993) O, H, C isotope study of rocks from the KTB pilot hole: crustal profile and constraints on fluid evolution. Contributions to Mineralogy and Petrology, 114, 42-52.

Simon K (2001) Does δD from fluid inclusion quartz reflect the original hydrothermal fluid? Chemical Geology, 177, 483-495.

Stober I, Bucher K (1999) Deep groundwater in the crystalline basement of the Black Forest region. Applied Geochemistry, 14, 237-254.

Taylor HP Jr (1974) The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Economic Geology, 69, 843-883.

Taylor HP Jr (1977) Water/rock interactions and the origin of H2O in granitic batholiths. Journal of the Geological Society London, 133, 509-558.

Taylor HP Jr (1979) Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In: Geochemistry of hydrothermal ore deposits, 2nd Ed. (ed. Barnes HL), 236-277.

Von Gehlen (1987) Formation of Pb-Zn-F-Ba-mineralizations in SW-Germany: a status report. Fortschr. Miner., 65, 87-113, Stuttgart.

Von Gehlen (1989) Ore and Mineral Deposits of the Schwarzwald. In: R. Emmermann and J. Wohlenberg (Editors), The German Continental Deep Drilling Program, Springer Verlag, 276-295.

Vovk IF, Vysotskii VI (1982) Isotopic composition and geochemical characteristics of subsurface waters of the Krivoi Rog Basin as indicators of their interrelation and origin. Water Res. 9, 15-21.

Werner W, Dennert V (2004) Lagestätten und Bergbau im Schwarzwald. Freiburg.

Downloads

Published

2023-02-23

How to Cite

Baldorj, Baatartsogt, Thomas Wagner, and Gregor Markl. 2023. “A Fluid Inclusion and Stable-Isotope Study of Hydrothermal Vein Mineralization, Schwarzwald District, Germany”. Geological Issues 16 (1):5-31. https://journal.num.edu.mn/geology/article/view/2258.

Issue

Section

Судалгааны өгүүллэг