Хоорондын төвийн аргаар сүлжээг задлах

Authors

  • П. Далайжаргал МУИС, ХШУИС, Мэдээлэл, Компьютерын Ухааны Тэнхим
  • Г. Гантулга МУИС, ХШУИС, Мэдээлэл, Компьютерын Ухааны Тэнхим
  • З. Идэр МУИС, ХШУИС, Мэдээлэл, Компьютерын Ухааны Тэнхим
  • Б. Доржнамжирмаа МУИС, ХШУИС, Мэдээлэл, Компьютерын Ухааны Тэнхим

DOI:

https://doi.org/10.22353/mjeas.v4i1.938

Keywords:

комплекс сүлжээ, граф, сүлжээг задлах, хоорондын төвийн арга

Abstract

Энэ ажлаар хоорондын төвийн аргаар өндөр эрэмбэ оногдох оройн дэд олонлогийн сүлжээн дэх нөлөөллийг судална. Оройн дэд олонлогийг устгасны дараа үлдэх сүлжээний бүтэц дэх өөрчлөлтөөр дэд олонлогийн нөлөөг үнэлнэ. Устгах дэд олонлогийг илрүүлэх дөрвөн алгоритмыг тодорхойлж, тэдгээрийн үр дүнг харьцуулан шинжлэв. Хоорондын төвийн аргаар өндөр эрэмбэ оногдсон к оройг нэгэн зэрэг устгах алгоритмыг сүлжээг задлахад үр дүнтэйгээр ашиглах боломжтойг туршилтын үр дүн харуулав.

Downloads

Download data is not yet available.

References

Albert R, Hawoong J, Albert-L ́aszl ́o B. Error and Attack Tolerance of Complex Networks. Nature. 2000;406(6797):378-82.

Arulselvan A, Commander CW, Shylo O, Pardalos PM. Cardinality-constrained critical node detection problem. In: Performance models and risk management in communications systems. Springer; 2011. p. 79-91.

Salemi H, Buchanan A. Solving the distance- based critical node problem. INFORMS Journal on Computing. 2022.

Lalou M, Tahraoui MA, Kheddouci H. The critical node detection problem in networks: A survey.

Computer Science Review. 2018;28:92-117.

Freeman LC. A Set of Measures of Centrality Based on Betweenness. Sociometry. 1977;40(1):35- 41.

Brandes U. A faster algorithm for betweenness centrality. The Journal of Mathematical Sociology. 2001;25(2):163-77.

Geisberger R, Peter S, Dominik S. Better approximation of betweenness centrality. In Proceedings of the Meeting on Algorithm

Engineering Expermiments. 2008:90-100.

Tsalouchidou I, Baeza-Yates R, Bonchi F, Liao K, Sellis T. Temporal betweenness centrality in dynamic graphs. International Journal of Data Science and Analytics. 2020;9(3):257-72.

Riondato M, Evgenios MK. Fast Approximation of Betweenness Centrality through Sampling. The Journal of Mathematical Sociology.

;30(2):438-75.

Riondato M, Eli U. ABRA: Approximating Betweenness Centrality in Static and Dynamic Graphs with Rademacher Averages. ACM

Transactions on Knowledge Discovery from Data. 2018;12(5):1-38.

Fan C, Li Z, Yuhui D, Muhao C, Yizhou S, Zhong L. Learning to Identify High Betweenness Centrality Nodes from Scratch: A Novel Graph Neural Network Approach. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 2019:559-68.

Zhang Q, Rong-Hua L, Minjia P, Yongheng D, Guoren W, Ye Y. ABRA: Approximating Betweenness Centrality in Static and

Dynamic Graphs with Rademacher Averages. ArXiv:210710052 [Cs]. 2021.

Tarjan RE, Uzi V. An Efficient Parallel Biconnectivity Algorithm. SIAM Journal on Computing. 1985;14(4):862-74.

Tian L, Bashan A, Shi DN, Liu YY. Articulation points in complex networks. Nature communications. 2017;8(1):1-9.

Leskovec J, Jon K, Christos F. Graph Evolution: Densification and Shrinking Diameters. ACM Transactions on Knowledge Discovery from Data. 2007;1(1):1-41.

Wandelt S, Sun X, Feng D, Zanin M, Havlin S. A comparative analysis of approaches to network- dismantling. Scientific reports. 2018;8(1):1-15

Downloads

Published

2022-12-05

How to Cite

[1]
П. . Далайжаргал, Г. . Гантулга, З. . Идэр, and Б. . Доржнамжирмаа, “Хоорондын төвийн аргаар сүлжээг задлах”, MJEngApplS, vol. 4, no. 1, Dec. 2022.