Түлшээ үржүүлэн шатаах хурдан реакторын эхлэл голомтын дизайны судалгаа

Authors

  • Одмаа C МУИС, Инженер Технологийн Сургууль, Ногоон эрчим хүч, инженерчлэлийн тэнхим

DOI:

https://doi.org/10.22353/physics.v36i605.9341

Keywords:

Түлшээ үржүүлэн шатаадаг хурдан реактор, эхлэл (start-up) голомт

Abstract

Дэлхийн энергийн хэрэгцээ өсөхийн хэрээр түүнийг хангах тогтвортой, найдвартай, цэвэр эх үүсвэрийн нэг нь цөмийн эрчим хүч болно. Байгалийн ураныг үр дүнтэй ашиглах, цөмийн ашигласан түлшний хэмжээг багасгах, хуримтлалыг бууруулах, дахин боловсруулах үнэтэй үйлдвэрийн дутагдлыг нөхөх нэг арга нь түлшээ үржүүлэн шатаах хурдан реакторыг ашиглах юм. Ийм реакторт байгалийн эсвэл ядуурсан уран түлш ашиглах тул голомтыг критик төлөвт ажиллуулахын тулд нейтроны урсгал өндөртэй байрлалд хуваагдах изотопын агуулагдац өндөртэй түлшийг сэлгэн байрлуулах арга хэрэглэдэг. Энэхүү ажлаар цахиурт уран (U3Si2) түлштэй, шингэн натри хөргөлттэй, сэлгэн байрлуулах схемтэй, түлшээ үржүүлэн шатаах хурдан реакторын эхлэл голомтын дизайн хийж, транзиент анализ гүйцэтгэн нейтроникийн үзүүлэлтийг тодорхойлов.

[English]

World energy demand is increasing daily, so one of reliable, sustainable, and clean sources to satisfy this demand is nuclear energy. In particular, innovative fast reactor systems such as breed-and-burn (B&B) reactors can make effective use of natural uranium, reducing the amount of spent nuclear fuel as well as the accumulation of nuclear waste and the need for costly fuel reprocessing plants to separate the fissile isotopes from the spent nuclear fuel. In B&B reactors, since the core consists of natural and/or depleted uranium fuel, high reactivity or fresh fuel must then always be located in the high-neutron-flux region by appropriately shuffling the fuel assemblies during the core operating period in order to achieve a critical core. The study’s purposes were to design a start-up core design of Breed-and-Burn reactor with rotational fuel shuffling scheme using U3Si2 and sodium coolant and to demonstrate its performance at equilibrium state.

Downloads

Author Biography

Одмаа C, МУИС, Инженер Технологийн Сургууль, Ногоон эрчим хүч, инженерчлэлийн тэнхим

МУИС, Цөмийн физикийн судалгааны төв

МУИС, Инженер Технологийн Сургууль, Ногоон эрчим хүч, инженерчлэлийн тэнхим

References

International Atomic Energy Agency, Power reactor information system, https://pris.iaea.org/pris/ (current as of Oct.08, 2024).

T. ELLIS, et al., TWRs: A truly sustainable and full-scale resource for global energy needs. Proceedings of ICAPP’10, SanDiego, CA, USA, June 13-17, 2010, Paper 10189.

J. GILLELAND, R. PETROSKI, and K. WEAVER, The traveling wave reactor: design and development, Engineering, 2, 88–96 (2016).

H. SEKIMOTO and K. RYU, A New Reactor Burnup Concept CANDLE, Proc. Physor 2000, Pittsburgh, Pennsylvania, 2000, American Nuclear Society (2000).

H. SEKIMOTO, Application of CANDLE Burnup Strategy for Future Nuclear Energy Utilization, Prog. Nucl. Energy, 47, 91, 1 (2005); https://doi.org/10.1016/j.pnucene.2005.05.007.

E. GREENSPAN, A phased development of B&B reactors for enhanced nuclear energy sustainability. Sustainablility 2012, 4, 2745-2764. doi:10.3390/su4102745.

S. QVIST and E. GREENSPAN, “Design space analysis for B&B reactor cores,” Nucl. Sci. Eng, 182, 197-212 (2016); http://dx.doi.org/10.13182/NSE14-135

T.OBARA, K.KUWAGAKI, J.NISHIYAMA, “Feasibility of burning wave fast reactor concept with rotational fuel shuffling,”Proc. of International Conference of Fast Reactors and Related Fuel Cycles: Next Generation Nuclear Systems for Sustainable Development (FR17), IAEA-CN245-051, Yekaterinburg, Russia, 26-29 June 2017, 2017.

K.KUWAGAKI, J.NISHIYAMA and T.OBARA, “Concept of Stationary Wave Reactor with Rotational Fuel Shuffling,” Nucl.Sci.Eng, 191, 178-186, (2018); https://doi.org/10.1080/00295639.2018.1463744

K.KUWAGAKI, J.NISHIYAMA and T.OBARA, “Concept of breed and burn reactor with spiral fuel shuffling,” Ann.Nucl.Energy, 127, 130-138 (2019); https://doi.org/10.1016/j.anucene.2018.12.006

O. SAMBUU, et al., Neutron balance features in Breed-and-Burn fast reactors, Nucl. Sci. Eng., 196, 322-341, (2022).

С.Одмаа. Түлшээ үржүүлэн шатаах хурдан реакторын нейтроны тоог нэмэгдүүлэх боломжууд. МУИС, ФИЗИК. No 35 (594), 2024, xx1-8. https://doi.org/10.22353/physics.v34i577.5914

O. SAMBUU, et al., Feasibility of breed-and-burn reactor core design with nitride fuel and lead coolant, Ann. Nucl. Energy., 182 (2023) 109583; https://doi.org/10.1016/j.anucene.2022.109583.

Odmaa Sambuu, Van Khanh Hoang, Jun Nishiyama,Toru Obara. Concept of Lead-Cooled Rotational Fuel-Shuffling Breed-and-Burn Fast Reactor. Transactions of the American Nuclear Society, 127, (1), 1052-1054 (2022)

O. SAMBUU, et al., Feasibility of RFBBs with Silicide Fuel and Sodium Coolant, Accepted in publication to Transactions of the American Nuclear Society, Washington. D.C., November 12-15, 2023.

M.R. FINLAY, et al., Irradiation behaviour of uranium silicide compounds, J. Nucl. Mat., 325, 118-128 (2004).

J.T. WHITE, et al., Thermophysical properties of U3Si2 to 1773 K, J. Nucl. Mat., 464, 275-2280 (2015).

J. LEPPÄNEN, Serpent–a Continuous-energy Monte Carlo Reactor Physics Burnup Calculation Code, VTT Technical Research Centre of Finland (2015).

M.B. CHADWICK, et al., ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology, Nuclear data sheets, 107, 12, 2931 (2006).

Edited by D.G. CACUCI, Handbook of Nuclear Engineering. Vol.6, p.555. Springer (2010).

B. PELLAUD, Proliferation Aspects of Plutonium Recycling, J. of Nucl. Mat. Management, Vol XXXI, No. I, 30-38 (2002).

Downloads

Published

2024-11-21

How to Cite

[1]
C О., “Түлшээ үржүүлэн шатаах хурдан реакторын эхлэл голомтын дизайны судалгаа”, Sci. tran. NUM, Phys., vol. 36, no. 605, pp. 28–34, Nov. 2024.