PET/CT ОНОШИЛГООНЫ ҮЕИЙН ЦАЦРАГИЙН ХАМГААЛАЛТ, ТУНГИЙН ТООЦООЛОЛ

Authors

  • Ц.Ганзул МУИС, Цөмийн физикийн судалгааны төв
  • М. Одсүрэн Монгол Улсын Их Сургууль, Инженер Технологийн сургууль, Ногоон эрчим хүч, инженерчлэлийн тэнхим
  • Д.Болортуяа Монгол Улсын Их Сургууль, Цөмийн Физикийн судалгааны төв

DOI:

https://doi.org/10.22353/physics.v36i605.9330

Keywords:

цацрагийн хамгаалалт, ПЭТ-КT төхөөрөмж, PHITS код

Abstract

Энэхүү ажилд дүрс оношилгооны PET/CT төхөөрөмж шинээр суурилуулах байгууламжийн оношилгооны үеийн цацрагийн хамгаалалт, тунгийн тооцооллыг аналитик томьёо болон PHITS код ашиглан харьцуулан судлав. Судалгаагаар 444 МБк цацраг идэвхтэй фтордеоксиглюкоз (18FDG) цэгэн үүсгүүрийг 17 см зузаан бетон ханатай өрөөнд байрлуулан загварчилж тунгийн чадлыг тооцоолоход хяналттай бүсэд зөвшөөрөгдөх тунгийн хязгаараас хэтрээгүй, харин хяналтгүй бүсэд 2.7 дахин их байв. Хяналтгүй бүсийн орчны цацрагийн хамгаалалтыг сайжруулахын тулд хананд нэмэлтээр 7 мм хар тугалга

[English]

In this study, radiation shielding and dose calculations for facility installing new PET/CT imaging equipment were compared using analytical formulas and the PHITS code. Calculated the dose rate by placing a 444 MBq radioactive 18FDG point source in a room with 17 cm thick concrete walls. While the dose remained within permissible limits in the controlled area, it was 2.7 times higher in the uncontrolled area. To enhance radiation shielding in the uncontrolled zone, an additional 7 mm of lead was estimated to be necessary for the walls.

 

Downloads

Download data is not yet available.

References

J. Chen, A Summary of UNSCEAR Evaluation on Medical Exposure to Ionizing Radiation and Call for More Representative Data, Radiation Medicine and Protection, 2024.

United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), 2008 Report to the General Assembly: Annex on Medical Exposures, 2010.

G. B. Saha, Fundamentals of Nuclear Pharmacy, Springer, 2018, ISBN: 978-3-319-57579-7.

M. T. Madsen, J. A. Anderson, J. R. Halama, J. Kleck, D. J. Simpkin, J. R. Votaw, R. E. Wendt, L. E. Williams, and M. V. Yester, AAPM Task Group 108: PET and PET/CT Shielding Requirements, Medical Physics, 2006.

D. J. Peet, R. Morton, M. Hussein, K. Alsafi, and N. Spyrou, Radiation protection in fixed PET/CT facilities - Design and operation, British Journal of Radiology, 2012.

M. Elschot, T. C. De Wit, and H. W. A. M. De Jong, The influence of self-absorption on PET and PET/CT shielding requirements, Medical Physics, 2010.

S. Vargas Castrillán and F. Cutanda henráquez, A study on occupational exposure in a PET/CT facility, Radiation Protection Dosimetry, 2011.

J. E. Turner, Atoms, Radiation, and Radiation Protection: Third Edition, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007, ISBN: 978-3-527-40606-7.

J. E. Martin, Physics for Radiation Protection: Second Edition, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006, ISBN: 3-527-40611-5.

H. Cember and T. Johnson, Introduction to Health Physics: Fourth Edition, The McGraw-Hill Companies, 2009, ISBN: 978-0-07-164323-8.

A. Stevens, Monte-Carlo Simulation: An Introduction for Engineers and Scientists, CRC Press, 2023, ISBN: 978-1-032-28077-6.

H. Iwase, K. Niita, and T. Nakamura, Development of general-purpose particle and heavy ion transport monte carlo code, Journal of Nuclear Science and Technology, 2002.

Downloads

Published

2024-11-21

How to Cite

tsengel, ganzul, Одсүрэн, М., & Болортуяа, Д. (2024). PET/CT ОНОШИЛГООНЫ ҮЕИЙН ЦАЦРАГИЙН ХАМГААЛАЛТ, ТУНГИЙН ТООЦООЛОЛ. Scientific Transaction of the National University of Mongolia. Physics, 36(605), 40–44. https://doi.org/10.22353/physics.v36i605.9330