
1 
 

Two-body problems in the orthogonal condition model 

M.Odsuren1,*, G.Khuukhenkhuu1, S.Davaa1, K.Katō2, A. Sarsembayeva3 

1School of Engineering and Applied Sciences and Nuclear Research Center, National University of Mongolia, 

Ulaanbaatar 210646, Mongolia 

2Nuclear Reaction Data Centre, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan 

3School of Industrial Engineering after A. Burkitbaev, Satbayev University, Almaty, 0500013, Kazakhstan 

In this work we investigate the 0+, 2+, 4+, 6+, 8+ and 10+resonant states of the + system 

and each advantage of Gaussian and Harmonic Oscillator basis wave functions in the 
complex scaled orthogonal condition model (CSOCM). 

INTRODUCTION 

The complex scaling method (CSM) [1-4] and the 

orthogonal condition model (OCM) [5] have been 

successfully utilized in the description of resonance 

states in light nuclei. In this work, we apply the 

CSOCM [4,6] to the 8Be and investigate two-body 

resonances for α+α system. We calculate resonance 

energies in the complex energy plane applying the 

CSM to the relative motion between two α-clusters. 

From the viewpoint of a microscopic description of 

the relative motion between the α+α clusters it is 

important to take into account the Pauli exclusion 

principle in the inter-cluster motion of nucleons. 

The Gaussian and Harmonic Oscillator wave 

functions are applied. The calculation procedure of 

using the Pauli principle are different in these basis 

functions, however, the same results for two-body 

system are expected. Our calculated results of the 

resonance energy and decay width are satisfactorily 

in agreement with experimental data for the J=0+, 

2+ and 4+ states [7]. The purpose of this work is to 

calculate experimentally unknown 6+, 8+ and 10+ 

higher excited states of 8Be system. 

COMPLEX SCALING METHOD 

In the last quarter century, a remarkable 

development in the description of resonances in 

quantum many-body systems has been realized 

through application of the CSM.  

Originally, the CSM was proposed by Aguilar, 

Combes, and Balslev in 1971 [1]. Simon advocated 

this method as a direct approach of obtaining many-

body resonances. The use of “direct” implies that the 

resonance wave functions are directly obtained with 

complex energy eigenvalues of the quantum many-
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body system by solving an eigenvalue problem of 

the complex-scaled Schrodinger equation, 𝐻𝜃𝛹𝜃 =

 𝐸𝜃𝛹𝜃 with a real scaling angle 𝜃. In the CSM, we 

take the imaginary value 𝑖𝜃as a parameter of the 

transformation.  

The CSM has been proposed to solve the resonance 

states in the similar way as bound state problems. In 

the CSM, the distance of the relative coordinate is 

rotated as 𝑟 ⟶ 𝑟𝑒𝑖𝜃  in the complex coordinate 

plane by introducing a real parameter 𝜃. Therefore, 

the Schrödinger equation  

 𝐻̂|𝛹〉 = 𝐸|𝛹〉    (1) 

is rewritten as  

 𝐻̂(𝜃)|𝛹𝜃〉 = 𝐸𝜃|𝛹𝜃〉,   (2) 

where 𝐻̂(𝜃)  and 𝛹𝜃  are the complex scaled 

Hamiltonian and the wave function, respectively. 

𝑈(𝜃) operates on a function Ψ, that is,  

𝛹𝜃 = 𝑈(𝜃)𝛹(𝑟) = 𝑒
3

2
𝑖𝜃𝛹(𝑟𝑒𝑖𝜃) (3) 

The eigenvalues and eigenstates are obtained by 

solving the complex scaled Schrodinger equation 

Eq.(2). The eigenvalues of resonance states are 

found as 𝐸𝜃 = 𝐸𝑟 − 𝑖𝛤𝑟/2, where 𝐸𝑟  is resonance 

energy and 𝛤𝑟 -width of the resonant state. More 

detailed explanation of the CSM is given in Refs.[1, 

2]. The complex scaled Hamiltonian of inter cluster 

motion is given by  

 𝐻̂(𝜃) = 𝑈(𝜃)𝐻̂𝑈−1(𝜃)   (4) 

TWO BODY INTERACTION  

For the alpha-alpha system the Hamiltonian is 

expressed as 
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𝐻̂ = ∑ 𝑇̂𝑖
2
𝑖=1 − 𝑇̂𝑐.𝑚. + 𝑉𝛼𝛼

𝑁𝑢𝑐𝑙(𝑟) + 𝑉𝛼𝛼
𝐶𝑜𝑢𝑙(𝑟).  

As mentioned at the beginning, in this work we use 

two different basis sets as follows:  

(i) A Gaussian basis for the radial part is given as 

 𝜙𝑙
𝑖(𝑟) = 𝑁𝑙

𝑖𝑟𝑙𝑒𝑥𝑝 (−
1

2 𝑏𝑖
2 𝑟2) 𝑌𝑙𝑚(𝑟). 

Here 𝑖 = 0,1,2, …,and 𝑁𝑙
𝑖 is normalization constants 

expressed as 𝑁𝑙
𝑖 =

1

𝑏𝑖
𝑙+3/2 {

2𝑙+2

(2𝑙+1)‼ √𝜋
}

1/2

 and 𝑏𝑖  is 

the size parameter of Gaussian function described as 

𝑏𝑖 = 𝑏0𝛾𝑖−1. Where 𝑏0 and 𝛾 are the first term and 

a common ratio in the geometric progression, 

respectively.  

(ii) Harmonic oscillator wave function for radial part 

is 

𝜙𝑛𝑙(𝑟) =

𝑁𝑙
𝑛 (

𝑟

𝑏𝐹
)

𝑙
𝐿𝑛

𝑙+
1

2 ((
𝑟

𝑏𝐹
)

2
) 𝑒𝑥𝑝 (−

1

2 𝑏𝐹
2 𝑟2) 𝑌𝑙𝑚(𝑟)  

here 𝐿𝑛
𝑙+1/2

 are Laguerre polynomials for the 

angular momentum l and 𝑁𝑙
𝑛 denotes the 

normalization constants as given by 𝑁𝑙
𝑛 =

{
2𝛤(𝑛+1)

𝑏𝐹
3𝛤(𝑙+𝑛+

3

2
)
}

1/2

. The size parameter of relative 

motion of two alpha-cluster𝑏𝐹 is taken as 0.967 fm 

which corresponds to a single particle size 

parameter 𝑏0 = 1.3975  fm employed to fit the 

observed r.m.s. radius of 4He. In the case (i), we 

introduce the Pauli-potential Vαα
P (r) = λ|χF〉〈χF| , 

where the strength λ is chosen as 107 MeV, which 

is enough to push up the Pauli-forbidden states into 

the unphysical energy region.  

RESULTS AND DISCUSSIONS  

In the numerical calculation, we have used two 

different basis set: (i) Gaussian basis function, and 

(ii) harmonic oscillator wave function. In Eq.5, the 

Buck [8] and folding [9] potentials are applied for 

the Gaussian basis function, but also the folding 

potential is employed in the harmonic oscillator 

wave function. According to the Buck-potential, the 

Pauli-forbidden states need not involve on the alpha-

alpha system because of the Pauli principle effect is 

estimated by an appropriate choice of alpha-alpha 

potential. However, it is important to take into 

account of the forbidden states when we use the 

folding potential of the effective nuclear interaction.  

From Eq.(2) the eigenvalues are obtained 

distributions of which on the complex energy plane 

are shown Figs. 1-2. Figs. 1-2 show the complex 

energy eigenvalues of 2+ and 4+states which are 

obtained by Buck and folding potentials for 

Gaussian basis at different  on the complex energy 

plane. The resonance energy solution must be 

stationary for changing the values of  as explained 

in Ref. [6]. 

 

Figure 1. The resonance eigenvalues at J=2+ for the different 

. Here Buck-potential is used for Gaussian basis. 

 

Figure 2. The resonance eigenvalues at J=4+ for the different 

. The folding potential is used for Gaussian basis.  

According to this explanation, we can see that for 

different 𝜃 segregated energy points are observed, 

but also these are almost unchanged the position by 

various on the complex energy plane (see Figs. 1 

and 2). Fig. 1-2 show that there is significant energy 

point segregation around the location resonance 

state at the complex scaled plane. 

In addition, Figure 1 and 2 present the outcome of 

the Gaussian basis function. Here Buck and folding 

potential parameters are applied at 𝜃 =

150, 200, 250 and at 𝜃 = 150, 200 , 250 , 300 on the 

complex energy plane, respectively. Furthermore, in 
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order to describe accurately the energies and widths 

for resonance state should be to consider the - and 

𝑏-trajectories. In Figs. 3-4 are displayed eigenvalues 

which were calculated by - and 𝑏-trajectories. 

 

Figure 3. The  and b-trajectory at J=2+. The Buck-potential 

and Gaussian basis are used.  

 

Figure 4. The  and b-trajectory at J=4+. The folding potential 

and Gaussian basis are used.  

Therefore, the 𝑏-trajectories shapesare displayed as 

circles and -trajectories shapes like curves. 

𝑏  -trajectories are performed two times for each 

different potential parameters as shown Fig. 3-4 and 

-trajectories are calculated 4 and 3 times for Buck 

and folding potentials, respectively. Moreover, we 

chose the steps of 𝑏-trajectories by 𝑏 = 𝑏0 + 0.1𝜅 

here 𝜅 = 1, 2 … , 10 which were calculated by two 

methods: changing parameter 𝑏 and  is fixed for 

each 𝑏-trajectories, and by the same𝑏 for every -

trajectories, here  is changing parameter and taken 

by 𝜃 = 𝜃0 + 𝜅 where 𝜅 = 0, 2, 4 … , 20. 

It can be seen from Figs. 3-4, the resonance states 

are accurately described when the behavior of the - 

and 𝑏 -trajectories are created well.The calculated 

result of harmonic oscillator wave function for 

folding potential is displayed in Fig. 5. 

  

Figure 5. The N-trajectory at J=4+. The folding potential and 

harmonic oscillator wave function are used.  

Fig. 5 shows the 𝑁-trajectories at 𝜃 = 13 and 𝑁 =

𝑁0 + 𝑘 here 𝑘 = 0, 2, 4, … , 30. The accurate values 

of resonances are taken into account by- and 𝑁-

trajectories for harmonic oscillator wave function. 

The spiral curve represents the 𝑁 -trajectory 

followed by the basis states when its size increases. 

The approach of the energy point is round 𝑁 =

46 − 50. 

The results of the calculated energies with decay 

widths for 0+, 2+, 4+, 6+, 8+ and 10+ states of 8Be, 

experimental data and two different potential 

parameters are included in Table I. The 

experimental data are taken from Ref. [7]. 

Calculated results are obtained by using the various 

bases within the Gaussian and harmonic oscillator 

wave functions. The low-lying calculated states are 

comparable with observed data [7]. However, there 

is a slight difference of energy at the 0+ state 

between the calculated result for folding potential 

[9] and measured data. Furthermore, there is a 

difference between the calculated decay width of 

Gaussian basis and harmonic oscillator wave 

functions at the 0+ state. In order to clarify a reason 

of this difference, it may necessary to check the 

convergence of solutions and increase the number of 

employed basis functions. In addition, the obtained 

results by Gaussian basis function and Buck 

potential are 33.4 MeV (37.2 MeV) and 51.5 MeV 

(92.4 MeV) energies (widths) at the 6+ and 8+ states, 

but as we know no experimental evidence to support 

this calculated results, however, these results are 

indicated a good agreement with other resent 

computed results [10] which are 34.38 MeV (37.19 

MeV) and 53.65 MeV (93.74 MeV) at the 6+ and 8+ 

states, respectively. Furthermore, the higher excited 

state 10+ is computed by two bases functions 
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applying both potential parameters. The calculated 

results are in good agreement with each other. 

 

TABLE 1. The experimental and calculated resonance energies and widths of the 8Be.

 EXP 
Gaussian Basis function 

Harmonic oscillator 

wave function  [7] 

 Er(MeV) r(MeV) Er(MeV) r(MeV) Er(MeV) r(MeV) Er(MeV) r(MeV) 

0+ 9.1x10-2 6.8x10-6 9.13x10-2 ~10-6 6.41x10-1 3.8x10-5 6.06x10-1 3.0 x10-3 

2+ 3.132 1.5 2.75 1.24 3.01 1.2 2.90 1.4 

4+ 11.49 3.5 11.78 3.56 11.75 4.4 11.7 4.4 

6+ - - 33.4 37.2 30.5 35.7 30.5 36.8 

8+ - - 51.5 92.4 51.6 120 51.6 120 

10+ - - 70.7 160 70.0 180 70.0 180 

V0  122.6225 106.09 

β (fm-2) 0.22 [8] 0.2009 [9] 

 (fm-1) 0.75 0.5972 

SUMMARY 

In this work we have presented different methods to 

calculate resonance state in the two-body system by 

CSOCM. Moreover, it can be seen that the different 

potential parameters able on both Gaussian and 

harmonic oscillator wave functions. The -, 𝑏- and 

𝑁-trajectories are performed in order to determine 

the resonance states for different method.  

The methods well explain all obtained resonance 

states of 8Be except the width for the 0+state 

calculated by harmonic oscillator wave function. 

Furthermore, the results of the harmonic oscillator 

basis functions show that we need to employ a very 

large size basis functions in order to obtain 

converged resonance energies and widths.  

It is remarkable that 6+, 8+ and 10+ higher excited 

energies are calculated and broad decay widths are 

predicted. In connection with the broad decay 

widths these higher excited states may not able to 

observe as well defined resonances in experiment.  
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