Түлшээ үржүүлэн шатаах хурдан реакторын нейтроны тоог нэмэгдүүлэх боломжууд С.Одмаа^{а,b,1}

^аХими биологийн инженерчлэлийн тэнхим, ИТС, МУИС ^bЦөмийн физикийн судалгааны төв, МУИС

Хураангуй

Түлшээ үржүүлэн шатаадаг хурдан реакторын голомтод ядуурсан эсвэл баяжуулаагүй цөмийн түлш ачаалдаг ба реактор ажиллахдаа түлшээ шатаахын зэрэгцээ шинээр үржүүлэн бий болгон ашигладаг. Иймд ураны нөөцийг үр дүнтэй ашиглах, цөмийн ашигласан түлшний хэмжээ багасах технологийн маш их давуу талтай, дэвшилтэт цөмийн реактор болно. Цөмийн реактор дэх нейтроны тоо нь түүнийг үүсгэх болон алдах (шингээх болон гоожих) урвалын хурдны зөрүүгээр тодорхойлогдох бөгөөд энэ тоо өндөр байснаар түлшээ үржүүлэх процесс илүү үр ашигтай явагдана. Иймд голомт дэх нейтроны тоог нэмэгдүүлэх боломжийг олох нь энэ ажлын зорилго юм.

Уг ажилд хязгааргүй урттай түлшний элементийн өргөн болон түлшний бүрээс материалын зузаан, нягтыг өөрчлөн нейтроны тоонд нөлөөлөх нөлөөллийг түлш, бүрээс, хөргүүрийн материалын өөр өөр хослолд тооцоолон харьцуулав.

Түлхүүр үгс: Түлшээ үржүүлэн шатаадаг хурдан реактор, нейтроны нийт тоо, голомтын материалын хослол, нейтроны тоог нэмэгдүүлэх

Мэргэшлийн индекс (PACS number): 28.00.00; 28.41.Ak; 28.50.Ft

I. УДИРТГАЛ

Дэлхийн 30 гаруй оронд ажиллаж буй 440 орчим цөмийн эрчим хүчний реакторын 90 % гаруй нь баяжуулсан U²³⁵ түлштэй дулааны реактор байна [1]. Эдгээр реакторын түлш дэх ураны 95-97 % хуваагдахуйц цөм болох U²³⁸-ийг агуулна. Хуваагдахуйц цөм ΗЬ хурдан дулааны нейтроноор хуваагдахаас гална нейтроныг шингээн, улмаар бета задралд орсноор хуваагдагч цөм Pu²³⁹-ийг үүсгэж байдаг. Иймд уран түлштэй бүх төрлийн цөмийн реакторт хуваагдагч U²³⁵ түлш шатахын зэрэгцээгээр шинээр Pu²³⁹ түлш үүсч байдаг. Хурдан реактор байгалийн уран түлшээр ажилладаг тул тэнд шинээр үүсэх Pu²³⁹-ийн хэмжээ дулааны реакторт үүсэх хэмжээтэй харьцуулахад их байдаг. Иймд хурдан реакторыг түлшээ үржүүлдэг гэж ярьдаг. Өмнө ажиллуулж байсан, одоо ажиллаж байгаа дулааны реакторт ашигласан түлшнээс маш их хэмжээний, ядуурсан уран бухий ашигласан цөмийн түлш үүсэн, хадгалагдаж байна. Ийм ашигласан цөмийн түлшийг дахин боловсруулж, үүнээс хэрэгтэй, хуваагдагч, үржүүлэгч изотопыг ялган авч болох ч ийм үйлдвэр маш их өртөгтэй, нөгөөтэйгүүр цөмийн зэвсгийн изотоп ялган авах боломжтой тул цөмийн эрчим хүчний реактор ажиллуулах улс орон бүрт ийм үйлдвэр байдаггүй. Тиймээс түлшээ үржүүлэнгээ

шатаадаг хурдан реакторыг хөгжүүлэх нь 1) дэлхийн ураны нөөцийг үр ашигтай хэрэглэх, ашигласан цөмийн түлшний хэмжээг 2) багасгах, 3) ашигласан цөмийн түлшийг дахин боловсруулах, өртөг өндөртэй үйлдвэртэй байх хэрэгцээг бууруулах, 4) ашигласан цөмийн түлшийг цөмийн зэвсэг болгон ашиглах боломжийг хумих, 5) реактораас үүсэх хаягдлын цацраг идэвхийн хэмжээ багасах, 6) ашигласан тулшийг хадгалах их багтаамжтай хадгалалтын байгууламж барих шаардлагагүй болох зэрэг ач холбогдолтой болно. Реакторын голомтод байх нейтроны тоо их байх тусам түлшийг үржүүлэх боломж нэмэгдэнэ. Иймд энэ ажлын зорилго нь түлшээ үржүүлэн шатаадаг хурдан реакторын голомтийн нейтроны тоог нэмэгдүүлэх дизайны боломжийг харуулах болно. Энэ үүднээс хоёр хэмжээст түлшний элементийн геометр хэмжээс болон түлшний бүрээс материалын зузаан, нягтыг өөрчлөн нейтроны тоонд нөлөөлөх түлш, нөлөөллийг бүрээс, хөргүүрийн материалын өөр өөр хослолд тооцоолон харьцуулна.

II. НЕЙТРОНЫ ТООНЫ БАЛАНСЫН АРГА

Реакторын голомтод байх нейтроны тооны балансын арга нь түлш шатахад үүссэн болон алдагдсан нейтроны тооны зөрүүг үнэлэх ба

¹ Email: sodmaa1@num.edu.mn; sodmaa1@gmail.com

түлшээ үржүүлэн шатаах реакторын голомтын түлшний шаталтыг хязгаарладаг. Энэ аргыг Greenspan-ийн судалгааны групп [2-5] Энэ ажилд хязгааргүй урттай, нэг түлшний элементийн нейтроны тооны анализыг ойлгогч хилийн нөхцөлтэйгээр гүйцэтгэсэн. Тооцоолол

Зураг 1. Түлшний элементийн хөндлөн зүсмэг

хөгжүүлсэн ба доорх тэгшитгэлээр систем дэх нейтроны тоог үнэлнэ.

Нейтроны тоо (*NB*) = $\int_0^{Bu} \bar{v} \left[1 - \frac{1}{k(1-L)} \right] dBu$, (1) энд $\bar{\nu}$ нь хуваагдах урвалд үүсэх нейтроны дундаж тоо, Ви нь голомт дэх түлшний шаталтын хамгийн их утга, L нь системээс гоожиж алдагдах нейтроны хувь (үүнийг хязгааргүй системд тэг гэж үзнэ), ба k нь эффектив нейтрон үржүүлэх фактор (хязгааргүй системд хязгааргүй нейтрон үржүүлэх фактор). Хязгааргүй системийн нейтроник анализыг гүйцэтгэн хязгааргүй нейтрон үржүүлэх фактор болон хуваагдах урвалд үүсэх нейтроны дундаж тоог (эдгээрийг цаашид нейтроник параметрүүд гэе) шаталтын алхам бүрд шууд гарган авна. Ингээд эхний шаталтын алхамд нейтроны тоо (NB₁)-ийг дээрх тэг. (1)-ийн интегралд доод хил 0 ба дээд хил болох эхний алхам дэх түлшний шаталтын утга (Bu₁)-ыг мөн харгалзах нейтроникийн параметрүүдийг орлуулан доорх тэг.(2)-оор хялбархан тодорхойлно.

$$NB_{1} = \int_{0}^{Bu_{1}} \bar{v}_{1} \left[1 - \frac{1}{k_{inf.1}} \right] dBu, \qquad (2)$$

Удаах шаталтын алхамд нейтроны тоо (NB₂)ийг тэг.(2)-оор тодорхойлсон нейтроны тоо NB₁ийн утга дээр тэг.(1)-ийн интегралд доод хил болох эхний алхам дэх түлшний шаталтын утга (Bu₁) ба дээд хил болох удаах алхам дэх түлшний шаталтын утга (Bu₂)-ыг мөн харгалзах нейтроникийн параметрүүдийг орлуулан доорх тэг.(3)-оор тодорхойлно.

$$NB_{2} = NB_{1} + \int_{Bu_{1}}^{Bu_{2}} \bar{v}_{2} \left[1 - \frac{1}{k_{inf,2}} \right] dBu, \qquad (3)$$

Энэ мэтчилэн, ижил аргачиллаар түлшний шаталтын бусад алхамд хязгааргүй систем дэх нейтроны тоонуудыг харгалзан гарган авна.

Ш. ХОЁР ХЭМЖЭЭСТ, Хязгааргүй түлшний Элементийн нейтроник тооцоолол

гүйцэтгэсэн түлшний элементийн хөндлөн зүсмэг болон геометр хэмжээсийг Зураг 1-д харуулсан ба түлшний материалд ураны метал (U-10% Zr), байгалийн азотын агууламжтай ураны нитрид (UN_{nat}), N¹⁵ изотопыг 70 % ба 99 % баяжуулсан ураны нитрид (UN70, UN99), мөн ураны исэл (UO₂), хөргүүрийн материалд шингэн натри, шингэн хар тугалга, шингэн хар тугалга-висмутын хольц, түлшний бүрээсийн материалд ODS (исэл дисперслүүлэн хүчитгэсэн) [6,7]-ийг ган сонгон авсан. Нейтроныг залгих урвалын хөндлөн огтлолоороо азотын N¹⁴ изотоп нь N¹⁵-аасаа илүү өндөр байдаг, мөн энэ урвалын дүнд орчныг бохирдуулагч С¹⁴ үүсдэг тул үүний хэмжээг багасгах, N¹⁵ изотопын эзлэх хувийг ихэсгэх шаардлагатай болно. Ураны металын нягтыг онолын нягтын 75 %, нитрид түлшнийхийг онолын нягтын 90 % гэж авсан.

Уг нейтроник анализыг Монте Карло аргад ундэслэсэн SERPENT [8] симуляцийн кодоор гүйцэтгэсэн ба тооцоололд ENDF-B/VII цөмийн өгөгдлийн санг [9] ашигласан. Бүх нейтроник тооцоололыг ижил нөхцөлд гүйцэтгэсэн ба цикл бүрт үүсгүүрийн нейтроны тоо 100000, нийтдээ идэвхтэй 100 цикл тооцооллыг гүйцэтгээд, эхний 20-ийг нь үр дүнгийн статистик алдааг багасгах үүднээс хэрэгсээгүй. Ажиллагааны үеийн түлш, бүрээс, хөргүүрийн температурыг 800, 700 ба 700 К гэж авсан. Нейтроник тооцоололд тухайн реакторын үйлдвэрлэх чадал буюу үүсэх нейтроны хурдыг тохируулж өгдөг. SERPENT кодод үүнийг илэрхийлэх олон сонголт байдгийн нэг нь бодлогод өгөгдсөн геометрт уусэх нейтроны нийт урсгалыг өгөх юм. Хурдан нейтроны реакторын голомтод урсгал нейтроны дундаж дулааны реакторынхаас өндөр ба сүүлийн үеийн дэвшилтэт дизайнд 10¹⁵ п/см²с эрэмбээс багагүй байдаг [10,11]. Иймд шаталтын турш түлшний элемент дэх нейтроны нийт урсгал 10¹⁵ п/см²с

байхаар авсан.

Түлшний элемент дэх нейтроны нийт тоог нэмэгдүүлэх зорилгоор түүний дизайны параметр болох бүрээсийн зузаан болон нягтыг тус бүр 10 дахин бууруулах эсвэл түлшний элементийн өргөнийг 0.04 см-ээр нарийсган өөрчилсөн. Эдгээр өөрчлөлтийн нейтроны тоонд нөлөөлөх нөлөөллийг түлшний элементийн материалын хослолоос хэрхэн хамаарахыг судлана.

материалтай болон Өөр өөр лизайны параметртэй түлшний элементийн шаталтын тооцооллыг гүйцэтгэн харгалзах хязгааргүй нейтрон үржүүлэх фактор болон тэг.(1)-ээр тооцоолсон нейтроны тоог түлшний шаталтаас хамааруулан тодорхойлно. Жишээ болгоод Зураг 2-д N¹⁵ изотопыг 99 % баяжуулсан ураны нитрид түлштэй, натри хөргүүртэй, дизайны анхны параметртэй түлшний элементийн хязгааргүй нейтрон үржүүлэх факторыг түлшний шаталтын утгаас хамааруулан харуулав. Зураг 3-т уг тулшний элемент дэх нейтроны нийт тоог утгаас тулшний шаталтын хамааруулан харуулав. Эдгээр зураг дэх 1-ээс 5 хүртэлх дугаарласан мужийг тайлбарлая⁸⁻¹¹:

- Баяжуулаагүй уран ашиглаж байгаа тул реактор ажиллаж эхлэнгүүт хуваагдлаар үүсэх нейтронууд үржүүлэгч цөмд шингэн, хуваагдагч цөмийг шинээр бий болгох үе юм. Энд хязгааргүй нейтрон үржүүлэх фактор 1 хүртэл ихэсэх ба NB-ийн утга хурдан буурах муж болно. Энэ нь голомтод үүсч буй нейтроны тоо шингэж буй хэмжээнээс бага байгааг харуулна. Энэ мужийг "түлш үржүүлэх үе шат" гэе. Энэ үед түлш шатаж барагдахын зэрэгцээ, системд үржүүлэгч материалаас хуваагдагч материалд шинээр үүсч байгаа ба k_∞ огцом нэмэгдэж байна.
- Хязгааргүй нейтрон үржүүлэх фактор 1-тэй тэнцэх ба NB-ийн утга эхний хамгийн бага утгандаа хүрнэ (k_{inf}=1, NB=XБУ₁). Энэ жишээнд түлшний шаталтын утга 40 MBтөдөр/кг хүрэхэд k_{inf}=1 ба NB=XБУ₁= -33 байна. Энэ нь өмнөх үед үржүүлэгч изотопоос үүссэн хуваагдагч изотопууд хуваагдалд орж үүсэх нейтроны тоо нэмэгдсэнээр шингэх хурдыг давах үе эхэлнэ, нейтрон шингэхээсээ илүүтэй үүсч байгааг заана. Энэ мужийг "нейтрон үүсэх үе шат" гэе.
- Анх байсан түлш болон шинээр үүссэн түлш шатахын хэрээр системд үүсэх нейтроны нийт тоо нь шингэх нийт хэмжээтэй тэнцэж, нейтроны тоо баланслагдана ба энэ үед харгалзах шаталтыг шаардагдах хамгийн

бага шаталтын утга гэх ба нейтроны тоо тэнцвэржих эхний цэг (FNBP) гэе.

- 4. Өмнөх 3-р шатаас энэ шат хүртэл нейтрон уусэх хурд их байх ба түлш шатахын хэрээр яваандаа хуваагллын бүтээгдэхүүн хуримтлагдахын хэрээр нейтроны шингэлт давамгайлж, нейтрон үүсэх хурд буурч ирнэ. Ингээд 4 цэгт хязгааргүй нейтрон үржүүлэх фактор дахин 1-тэй тэнцэнэ, энэ үед NB-ийн утга хамгийн их утгандаа хурдэг (kinf=1, NB=XИУ) ба харгалзах шаталтын утгыг MNBP гэе. Энэ жишээнд түлшний шаталтын утга 360 МВт-өдөр/кг хүрэхэд k_{inf}=1 ба NB=XИУ=46 байна. Энэ мужийг "нейтрон шингэх муж" гэе.
- Энэ мужид нейтроны үүсэх, шингэх хурд дахин тэнцвэржих ба харгалзах шаталтын утгыг нейтроны тоо тэнцвэржих удаах цэг (SNBP) гэе.

Түлш, бүрээс, хөргүүрийн өөр өөр хослолд, дизайны параметрүүдийг өөрчлөн NB, FNBP, MNBP, SNBP утгуудыг олно. Түлшний шаталтын эдгээр утгад харгалзах бүрээсийн эвдрэл, гэмтлийг илэрхийлэх DPA- ийн утгуудыг харьцуулна.

Зураг 2. Азотын N¹⁵ изотопыг 99 % баяжуулсан нитрид түлштэй, натри хөргүүртэй түлшний элементийн хязгааргүй нейтрон үржүүлэх факторын шаталтаас хамаарсан өөрчлөлт

раг 5. Азотын №° изотопыг 9 9% оаяжуулсан нитрид түлштэй, натри хөргүүртэй

түлшний элемент дэх нейтроны нийт тооны шаталтаас хамаарсан өөрчлөлт

IV. ҮР ДҮН, ХЭЛЭЛЦҮҮЛЭГ

Нейтроник анализыг түлшний материалын хослол бүрд дизайны параметрийн өөр өөр утганд гүйцэтгэсэн ба жишээ үр дүнг нитрид түлштэй, хар тугалга хөргүүртэй тохиолдолд Хүснэгт 1-д харуулав.

Реактор дэх нейтроны тоог ихэсгэх дизайны параметрийн боломжит утга нь түлшний бүрээс материалд үүсэх эвдрэл гэмтлийн утгаар хязгаарлагдана. Сайжруулсан НТ-9 бүрээс материалын цацрагийн гэмтлийн хязгаарыг 650 DPA гэж тогтоосон [12] ба энэ ажилд ашигласан ODS бүрээсийн хувьд гэмтлийн ийм хязгаар одоогоор тогтоогоогүй байна. Бидний гүйцэтгэсэн өмнөх ажилд ODS ба HT-9 бүрээс бүхий түлшний элементийн нейтроник шинж чанар ойролцоо байсан [13] тул энэ ажилд ODS материалын гэмтлийн хязгаарын утгыг 650 DPA-ээр тооцов.

Fe ба Cr-ийн атом зонхилсон металыг 100 кэВээс их энергитэй нейтроны 2*10²¹ н/см² нейтроны урсацд өртүүлэхэд 1 DPA гэмтэл үүсч байгааг тодорхойлсон байдаг [14]. Энэ харьцааг харгалзан түлшний FBNP, MNBP, SNBP шаталтын үед харгалзан түлшний бүрээст хуримтлагдах нейтроны урсгалын утгыг олоод түүний цацрагийн гэмтлийг үнэлснийг Хүснэгт 1-д мөн өгөв.

							-	-
Түлш-хөргүүр	Дизайны параметр	FNBP, MBт- өдөр/кг	MNBP, MBт- өдөр/кг	SNBP, MBт- өдөр/кг	FNBP шаталттай	MNBP шаталттай	SNBP шаталттай	MNBP шатапттай
					түлшний бү	түлш дэх нейтроны тоо		
UNnat-Pb	анхных (P ₀ , t _c , р)	NA	NA	NA	NA	NA	NA	NA
	P ₀ -0.04	NA	NA	NA	NA	NA	NA	NA
	tc/10	223	295	355	505	642	767	4.5
	ρ/10	196	300	390	457	705	842	10.1
UN ₇₀ -Pb	анхных	178	330	456	402	680	954	23.3
	P ₀ -0.04	163	350	483	432	833	1170	31.4
	t _c /10	140	360	525	305	744	1136	50.0
	ρ/10	130	370	543	291	766	1167	60.0
dA-99-Pb	анхных	151	360	521	350	724	1081	45
	P ₀ -0.04	142	370	541	346	855	1299	54
	t _c /10	123	390	580	271	787	1267	74
	ρ/10	115	400	596	260	829	1314	84
T.Y	<u> </u>							

Хүснэгт 1. Дизайны өөр өөр параметртэй нитрид түлшний нейтроны тооны анализийн үр дүн

Тайлбар:

NA- түлшний хязгааргүй нейтрон үржүүлэгч фактор 1-ээс бага утгатай буюу критик төлөвт хүрээгүй.

Р₀=1.2 см- түлшний элементийн анхны дизайн дэх өргөн

tc=0.06 см- түлшний элементийн анхны дизайн дэх бүрээсийн зузаан

ρ=7.83 г/см³- түлшний элементийн анхны дизайн дэх бүрээсийн тасалгааны температур дэх нягт

Хүснэгт 1-ийн эхний баганад түлшний элементийн түлш болон хөргүүрийн хослолыг, 2-р баганад уг элементийн дизайны параметрүүдийн тохиолдлыг харуулав. Энд түлш хөргүүрийн хослол бүрт дизайны 4 тохиолдол байгаа ба анхных (P₀, t_c, ρ) гэдэг нь Зураг 1-т харуулсан геометр хэмжээстэй, түлшний бүрээсийн нягтыг өөрчлөөгүй, анхны нягтаар авсан болно. Дараагийн буюу P₀-0.04 тохиолдолд, түлшний элементийн анхны дизайны өргөнийг 0.4 мм-ээс багасгасан буюу анхны дизайнтай харьцуулбал хөргүүрийн эзлэх хувийг бууруулсан тохиолдолд харгалзана. Гурав дахь буюу t_c/10 гэдэг нь түлшний бүрээсийн зузааныг анхны дизайнаас 10 дахин нимгэрүүлсэн тохиолдол болно. Сүүлийн буюу р/10 тохиолдол нь түлшний бүрээсийн нягтыг 10 дахин шингэрүүлсэн нөхцөлд харгалзана. Хүснэгт 1-ийн 3-, 4-, 5-дахь багана нь өмнөх хэсэгт тайлбарласан 1-5 дугаартай мужын тайлбарт дурдсан түлшний шаталтын харгалзах утгууд болно. Харин Хүснэгт 1-ийн 6-, 7-, 8-дахь баганад нейтроны тоо тэнцвэржих үеүд болон түүний ХИУ-д харгалзах шаталттай түлшний бүрээсийн эвдрэл гэмтлийн утгуудыг харуулсан. Хамгийн сүүлийн баганад уг дизайны нейтроны нийт тооны ХИУ-ыг өгсөн.

Хүснэгт 1-д харуулсан утгуудыг бусад түлш (UO₂, UZr,), хөргүүрийн (Na, Pb-Bi)

хослолын үед мөн гарган авсан. Өөр өөр хөргүүртэй, MNBP шаталттай, азотын изотопын байгалийн агууламжтай болон N¹⁵ изотопыг 70 % эсвэл 99 % хүртэл баяжуулсан ураны нитрид түлш дэх нейтроны нийт тоог дизайны параметрүүдээс хамааруулан Зураг 4-д харуулав. Зураг 5-д гурван өөр шаталттай (FNBP, MNBP, SNBP) дээрх гурван төрлийн ураны нитрид түлшний бүрээсийн DPA-ийг дизайны параметрүүдээс хамааруулан харуулав.

Зураг 4. Өөр өөр хөргүүртэй, MNBP шаталттай байгалийн болон N¹⁵ изотопыг 70 % ба 99 % баяжуулсан нитрид түлш дэх нейтроны нийт тоо дизайны параметрээс хамаарах нь

Зураг 5. Өөр өөр хөргүүртэй, гурван өөр шаталттай, гурван өөр нитрид түлшний бүрээсийн гэмтэл

дизайны параметрээс хамаарах нь

					FNBP	MNBP	SNBP	MNBP
Хөргүүр	Дизайны параметр	FNBP, MNB MBт- MBт өдөр/кг өдөр/г	MNBP, MBT-	SNBP, MBт- өдөр/кг	шаталттай	шаталттай	шаталттай	шаталттай
							түлш дэх	
			өдөр/кг		түлшний (нейтроны		
						TOO		
	анхных	154	350	516	345	696	1064	46
Na	(P_0, t_c, ρ)	154	550	510	545	070	1004	40
	P ₀ -0.04	141	370	541	339	855	1310	57
	t _c /10	114	385	585	263	767	1243	81
	ρ/10	99	400	605	224	810	1311	94
	анхных	151	360	521	350	724	1081	45
	$P_0-0.04$	142	370	541	346	855	1299	54
Pb	t _c /10	123	390	580	271	787	1267	74
	ρ/10	115	400	596	260	829	1314	84
PbBi	анхных	151	360	524	350	734	1108	49
	P ₀ -0.04	141	375	546	345	881	1343	60
	t _c /10	122	385	585	270	793	1283	80
	ρ/10	114	400	599	257	831	1324	90

Хүснэгт 2. N¹⁵ изотопыг 99 % баяжуулсан нитрид түлшний нейтроны тооны анализийн үр дүн

Хүснэгт 3. Метал түлшний нейтроны тооны анализийн үр дүн

					FNBP	MNBP	SNBP	MNBP
Хөргүүр	Дизайны параметр	FNBP, MNBF MBт- MBт- өдөр/кг өдөр/к	MNBP, MBt-	SNBP, MBт- өдөр/кг	шаталттай	шаталттай	шаталттай	шаталттай
						•	түлш дэх	
			өдөр/кг		түлшний (нейтроны		
						TOO		
	анхных	134	375	546	305	809	1251	62
	(P_0, t_c, ρ)	151	575	5.10	505	007	1231	02
Na	P ₀ -0.04	123	385	570	335	973	1549	75
	tc/10	104	400	608	251	870	1441	99
	ρ/10	89	405	628	249	903	1534	115
	анхных	131	366	548	313	767	1286	64
DI	P ₀ -0.04	121	375	570	340	974	1561	76
Pb	t _c /10	103	400	608	266	922	1493	99
	ρ/10	96	404	624	255	934	1550	110
PbBi	анхных	128	370	554	308	830	1308	67
	P ₀ -0.04	119	380	573	336	989	1572	78
	t _c /10	101	400	612	253	923	1508	102
	ρ/10	94	405	628	252	946	1605	112

Зураг 4, 5 болон Хүснэгт 1 дэх ураны нитрид түлшинд харгалзах үр дүнгээс харвал N¹⁵ изотопыг илүү баяжуулах тусам түлш дэх нейтроны тоог ихэсгэх боломжтой байгаа нь харагдана. Зураг 5-аас харвал түлшээ шатаангаа үржүүлэх горимд ажиллахын тулд шаардагдах түлшний шаталтын хамгийн бага утгад харгалзах бүрээсийн гэмтлийн утга бүх хослолд хязгаараас хэтрээгүй ба энэ утга нитрид түлшийг баяжуулах тусам багасч байна.

Ингээд өөр өөр хөргүүр болон дизайны параметртэй, N¹⁵ изотопыг 99 % баяжуулсан нитрид түлшний элементийн нейтроник анализын үр дүнг нэгтгэн Хүснэгт 2-т харуулав. Түүнчлэн өөр өөр хөргүүр болон дизайны параметртэй исэл ба метал түлшнүүдэд нейтроник анализийг гүйцэтгэн харгалзах үр дүнг нэгтгэн харгалзан Хүснэгт 3, 4-т харуулав.

Хүснэгт 2-аас харвал нитрид түлштэй, натри хөргүүртэй түлшний элементийн бүрээсийн гэмтэл бусад хөргүүртэй үеийнхтэй харьцуулахад бага байна. Харин нитрид түлшний нейтроны тоог ихэсгэхийн тулд нягт багатай бүрээс хэрэглэх бол Na хөргүүр, нимгэн бүрээс эсвэл бага өргөнтэй түлшний элементийн хувьд PbBi хөргүүр тохиромжтой байна.

Хүснэгт 3-аас харвал метал түлшний элемент натри хөргүүртэй бол бүрээсийн гэмтэл

харьцангуй бага байна. Харин метал түлшний элемент дэх нейтроны тоог ихэсгэхийн тулд нягт багатай бүрээс хэрэглэх бол Na хөргүүр, нимгэн бүрээс эсвэл бага өргөнтэй түлшний хувьд PbBi хөргүүр тохиромжтой байна.

Хүснэгт 4-аас харвал исэл түлшний элемент хар тугалга-висмут хөргүүртэй, нимгэн бүрээстэй бол гэмтэл харьцангуй бага бөгөөд нейтроны тоо их байна. Дараагийн сонголт нь натри хөргүүртэй, нимгэн бүрээстэй дизайн болж байна.

d		ENDD		CNDD	FNBP	MNBP	SNBP	MNBP
YY	Дизайны параметр	FNBP, MBт- өдөр/кг	МNВР, МВт- өдөр/кг	SNBP, МВт- өдөр/кг	шаталттай	шаталттай	шаталттай	шаталттаи
Ide								түлш дэх
X					түлшний (неитроны		
						100		
	анхных	NA	NA	NA	NA	NA	NA	NA
	(P_0, t_c, ρ)							
Na	P ₀ -0.04	NA	NA	NA	NA	NA	NA	NA
	t _c /10	195	330	445	374	605	810	20.2
	ρ/10	174	344	479	384	637	835	30.6
	анхных	NA	NA	NA	NA	NA	NA	NA
DI	P ₀ -0.04	NA	NA	NA	NA	NA	NA	NA
Pb	t _c /10	201	335	447	394	618	832	19.7
	ρ/10	179	344	479	360	637	849	30.7
PbBi	анхных	NA	NA	NA	NA	NA	NA	NA
	P ₀ -0.04	NA	NA	NA	NA	NA	NA	NA
	t _c /10	NA	NA	NA	NA	NA	NA	NA
	ρ/10	NA	NA	NA	NA	NA	NA	NA

Хүснэгт 4. Исэл түлшний нейтроны тооны анализийн үр дүн

V. ДҮГНЭЛТ

Энэхүү ажлаар түлшээ үржүүлэнгээ шатаах хурдан реакторын голомт дэх нейтроны тоог нэмэгдүүлэхийн тулд дизайны параметрүүдийг өөрчлөх боломжыг түлш, хөргүүрийн материалиас хамааруулан, түлшний бүрээсийн эвдрэл гэмтэл (DPA)-ээр хязгаарлан судалсан. Ерөнхийдөө, нитрид түлшийг баяжуулбал нейтроны тоо нэмэгдэж, бүрээсийн гэмтлийг буурч байна. Түүнчлэн баяжуулсан нитрид эсвэл метал түлштэй, натри хөргүүртэй В&В реакторт бага нягттай буюу сийрэг бүрээс хэрэглэн нейтроны тоог нэмэгдүүлж болно. Харин исэл түлштэй, хар тугалга-висмут хөргүүртэй В&В реакторт нимгэн бүрээс хэрэглэн нейтроны тоог нэмэгдүүлж болно. Бүрээсийн зузаан болон нягтын сийрэгжилт нь реакторын ердийн ажиллагаа болон ослын үеийн ачаалал даан, аюулгүй ажиллах хязгаарын утгаар хязгаарлагдана.

VI. ТАЛАРХАЛ

Энэхүү судалгааны ажил нь МУИС-ийн P2022-4374 дугаартай "Түлшээ үржүүлэн шатаадаг (B&B) бага чадлын реакторын голомтын дизайны судалгаа" сэдэвт өндөр түвшний төслийн хүрээнд МУИС-ийн санхүүгийн дэмжлэгтэйгээр хийгдсэн.

VII. АШИГЛАСАН ХЭВЛЭЛ

- International Atomic Energy Agency, Power reactor information system, https://pris.iaea.org/pris/ (current as of Oct.16, 2020).
- F.Heidet and E.Greenspan, Neutron balance analysis for sustainability of breed-and burn reactors, Nucl. Sci. Eng, 171, 13-31 (2012). http://dx.doi.org/10.13182/NSE10-114.
- 3. F.Heidet and E.Greenspan, *Breed and burn depleted uranium in fast reactors without*

actinides separation, Proceedings of PHYSOR 2010: Advances in reactor physics to power the nuclear renaissance, Vol. **2**, Pittsburgh, Pennsylvania, USA, May 9-14, 2010.

- E.Greenspan and F.Heidet, *Energy* sustainability and economic stability with breed and burn reactors, Prog. Nucl. Energy, 53, 794-799 (2011). doi:10.1016/j.pnucene.2011.05.002.
- S.Qvist and E.Greenspan, Design space analysis for B&B reactor cores, Nucl. Sci. Eng, 182, 197-212 (2016). http://dx.doi.org/10.13182/NSE14-135
- 6. K.Hatakeyama and Sh.Ukai, Physical property equations for the design evaluation of ODS ferritic steels, JNS TN9400 2001-108. Japan Nuclear Cycle Development Institute (2001).
- C.C.Eiselt, H.Schendzielorz, A.Seubert, B.Hary, Y.de Carlah, P.Diano, B.Perrin. and D.Cedat, ODS materials for high temperature applications in advanced nuclear systems, Nucl. Mat. Energy, 9, 22-28, (2016).
- 8. J.Leppanen, Serpent–a Continuous-energy Monte Carlo Reactor Physics Burnup

Calculation Code, VTT Technical Research Centre of Finland (2015).

- 9. M.B.Chadwick et al., *ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology*, Nuclear data sheets, 107,12, 2931 (2006); https://doi.org/10.1016/j.nds.2006.11.001.
- 10. N.Kasahara, editor. *Fast reactor system design*. (Springer, 2017).
- R.J.M.Konings, editor. Comprehensive nuclear materials. Volume 2: Material Properties/Oxide Fuels for Light Water Reactors and Fast Neutron Reactors. (Elsevier, 2012).
- 12. J.Gilleland, R.Petroski, and K.Weaver, *The traveling wave reactor: design and development*, Engineering, **2**, 88–96 (2016).
- O.Sambuu, V.Kh.Hoang, J.Nishiyama, and T.Obara, *Neutron balance features in Breed*and-Burn fast reactors, Nucl. Sci. Eng., **196**, 322-341, (2022).
- 14. D.G.Cacuci, editor, *Handbook of Nuclear Engineering*. Vol.6, (Springer, 2010).