Цагаан тугалга (Sn) болон нүүрстөрөгчийн нано мяндсаар (CNF) хольцолсон шпинел Li₄Ti₅O₁₂-ийн бүтэц, шинж чанарын судалгаа

Э.Уранбайгал^{1,} А.Мөнхбаатар^{1,2}, Л.Сарантуяа^{1,*}, Н.Цогбадрах^{2,**}, Г.Сэвжидсүрэн¹

¹ ШУА -ийн Физик Технологийн Хүрээлэн, Материал судлалын салбар

² Монгол Улсын Их Сургууль, Шинжлэх Ухааны Сургууль, Байгалийн Ухааны Салбар, Физикийн тэнхим

Энэхүү ажилд литийн ионы батарейн анодын материал болох шпинел Li₄Ti₅O₁₂ нэгдлийг цагаан тугалга (Sn) болон нүүрстөрөгчийн нано мяндас (carbon nanofiber) - аар хольцолж Li_{3.9}Sn_{0.1}Ti₅O₁₂, Li_{3.9}Sn_{0.1}Ti₅O₁₂/CNF нэгдлүүдийг золь гелийн аргаар гарган авч, дээжүүдийн бүтэц, шинж чанарыг онол болон туршлагын аргуудаар судалсан үр дүнг харуулав. Дээжийн кристалл бүтцийн шинж чанарыг судлахад рентген дифракцийн арга (XRD), нил улаан туяаны спектроскоп (FTIR)-ийн аргуудыг ашиглав. Онолын загварчлалын QUANTUM ESPRESSO багц програмаар Нягтын функционалийн онол дээр суурилсан аb initio квант механикийн аргыг ашиглан кристалл бүтэц ба электрон бүтцийн тооцооллыг гүйцэтгэлээ. Li_{3.9}Sn_{0.1}Ti₅O₁₂-ийн төлөвийн нягтыг тооцоолоход хориотой бүсийн өргөн цэвэр Li₄Ti₅O₁₂-тай харьуулахад харьцангуй бага буюу Eg=1.35 эВ байгааг харуулаа.

Түлхүүр үгс: LTO, CNF, золь гелийн арга, НФО, PAW, GGA

ОРШИЛ

Шпинел Li₄Ti₅O₁₂ нь литийн ионы батарейн анодын материалаар ашиглахад нэн тохиромжтой нэгдэл бөгөөд сүүлийн жилүүдэд хамгийн эрчимтэй судлагдаж буй электродын материалуудын нэг юм. Өнөө үед зөөврийн цахилгаан хэрэгслүүд болон цахилгаан автомашины хэрэглээ ихэссэнтэй зэрэгцэн тэдгээрт ашиглагдах литийн ионы батарейн чанарыг сайжруулах, энергийн шинж багтаамжийг нь ихэсгэх шаардлага улам бүр нэмэгдэж байна. Анодын материалаар хамгийн өргөн хэрэглэгдэж буй графит (LiC₆) нь литийн интеркаляц явагдах үед 10%-ийн эзлэхүүний тэлэлт үзүүлдэг, мөн металл литийн атомууд үүсч электролит болон электродын хооронд үе үүссэнээр батарейн дотоод эсэргүүцэл ихэсгэдэг зэрэг сул талуудтай. Харин шпинел Li₄Ti₅O₁₂ нэгдлийн хувьд¹ Li/Li⁺ процессын 1.55В хүчдэл үүсгэдэг бөгөөд онолын багтаамж 175 мАц/г байдаг. Мөн литийн интеркаляц явагдах үед ердөө 0.1% -ийн кристалл торын эзлэхүүний тэлэлт үзүүлдэг [1]. Үүнээс гадна Li₄Ti₅O₁₂ нь термодинамикийн хувьд өндөр тогтвортой [2], батарейн системийн эсэргүүцлийг нэмэгдүүлж, цахилгаан цэнэгийн нягтралыг бууруулдаг электрод болон электролит хоорондын үе

уусгэдэггүй давуу талуудтай. Харин Li₄Ti₅O₁₂ нь цахилгаан дамжууллын коэффициент багатай (10⁻⁸-10⁻¹³ См см⁻¹)[†], литийн ионы диффузийн коэффициент бага ($\sim 10^{-12}$ см² См⁻¹)[†] тул батарейн гаралтын чадал бага байдаг [3]. Эдгээр дутагдалтай талуудыг сайжруулахын тулд олон тооны туршилт болон онолын судалгаагаар Li₄Ti₅O₁₂-ийг шилжилтийн металлуудаар хольцлох, дамжуулагч материалаар хольцлон нийлмэл нэгдэл гарган авах, бөөмийн хэмжээг багасгах зэрэг аргуудыг ашигласан байдаг [1]. Нүүрстөрөгчийн аллотропууд болох графен 108 См[†]/м, нүүрстөрөгчийн нано хоолой (CNT) 10³-10⁴ См/м [4] нүүрстөрөгчийн нано мяндас (CNF) 106-107 См/м [5] утга бүхий өндөр цахилгаан дамжуулалтай байдаг. Эдгээр нүүрстөрөгч агуулсан Li₄Ti₅O₁₂ -ийн нийлмэл нэгдлүүдэд нуурстөрөгчид нь Li₄Ti₅O₁₂-ийн кластеруудыг хооронд нь холбох гүүр болж, электрон шилжих замыг үүсгэснээр гаралтын чадал болон бүтцийн тогтвортой байдал нэмэгддэг [6]. Туршилтын аргаар Li₄Ti₅O₁₂ -ийг Cr³⁺, Mn³⁺, Ni³⁺, Al³⁺, Ga³⁺ зэрэг шилжилтийн металлуудаар хольцлосноор [7.8] цахилгаан дамжууллын чадварыг нэмэгдүүлсэн байдаг. Мөн Нягтын функционалийн онолыг ашиглан Li₄Ti₅O₁₂-ийг Сг, Mg [9], Gd [10], W⁶⁺, Br⁻ [11] зэрэг элементүүдээр хольцлон онолын тооцоо хийхэд

^{*} Electronic address: saraa.ipt@gmail.com

^{**} Tsogbadrakh@num.edu.mn

^{*} См- Цахилгаан дамжууллын нэгж Сименс

цахилгаан дамжуулах шинж чанар сайжирч байсан үр дүн Liu, Zhang нарын ажлуудад хэвлэгдсэн байна. Бид энэхүү ажилд Li₄Ti₅O₁₂ийн цахилгаан дамжууллыг сайжруулах зорилгоор уг нэгдлийг цагаан тугалга (Sn) болон CNF-ээр хольцлон гарган авсан болно.

СУДАЛГААНЫ АРГА ЗҮЙ

Химийн синтезийн золь гелийн аргаар Li_{3.9}Sn_{0.1}Ti₅O₁₂ болон Li_{3.9}Sn_{0.1}Ti₅O₁₂/CNF нэгдлүүдийг гарган авч физик, химийн шинж шинж чанарыг багажит анализийн арга ашиглан судлан, мөн онолын загварчлал ашиглан уг нэгдлүүдийн электрон бүтцийн тооцооллыг гүйцэтгэлээ.

I. Туршилтын хэсэг:

<u>Li_{3.9}Sn_{0.1}Ti₅O₁₂ нэгдлийг гарган авах химийн синтез.</u>

Литийн ацетат дигидрат (LiCH₃COO·2H₂O) -аас 0.831 гр, цагаан тугалгын хлорид дигидрат (SnCl₂·2H₂O) -ыг 0.055 гр авч, 50 мл этанолд нэгэн төрлийн болтол соронзон уусган хутгуураар хутгаад, уусмал дээр 3 мл титаны (Ti(OCH(CH₃)₂)₄)-ыг изопропоксид дусал дуслаар нэмж 10 минутын турш соронзон хутгуураар хутгана. Соронзон хутгуурын үйлчлэл дор уусмалыг 80°С хүртэл халаан, гель үүсгэнэ. Үүссэн гелийг хатаах зууханд 60°С -т 24 цагийн турш хатаана. Хатаасан дээжийг шаазан тигельд нунтагласны дараа шатаах зууханд 800°С -т азотын хийн орчинд 12 цаг шатааж, Li_{3.9}Sn_{0.1}Ti₅O₁₂ нэгдлийг гарган авлаа [12].

<u>Li_{3.9}Sn_{0.1}Ti₅O₁₂/CNF нэгдлийг гарган авах</u> химийн синтез

Li_{3.9}Sn_{0.1}Ti₅O₁₂/CNF нийлмэл нэгдлийг гарган авах синтез нь Li_{3.9}Sn_{0.1}Ti₅O₁₂ нэгдлийг гарган авсан дээрх синтезтэй ижил бөгөөд CNF-аар хольцолсон. Үүнд: 0.831 гр литийн ацетат дигидрат (LiCH₃COO·2H₂O) болон 0.055 гр цагаан тугалгын хлорид дигидрат (SnCl₂·2H₂O)ыг 50 мл этанолд уусган бэлтгэнэ. Дараа нь 10 мл этанолд 0.089 гр нунтаг нүүрстөрөгчийн нано мяндас (CNF)-ыг нэмэн хэт авиагаар 1 цаг үйлчлүүлэн, уусмалыг нэгэн төрөл болгоно. Уг ΜЛ титаны изопропоксид уусмалд 3 (Ti(OCH(CH₃)₂)₄) -ыг дусал дуслаар нэмнэ. Бэлтгэсэн уусмалуудыг хольж, 10 мин соронзон хутгуураар хутган, температурыг 80°С-д барьж гель үүстэл хутгана. Үүссэн гелийг хатаах зууханд 60°С -т 24 цагийн турш хатаав. Дээжийг нунтаглан, шатаах зууханд 800°С -т азотын хийн орчинд 12 цаг шатаана [13].

<u>Гарган авсан дээжүүдийн бүтэц, шинж</u> <u>чанарын судалгаа</u>

Бид гарган авсан дээжийн кристалл бүтцийн анализыг рентген дифракцийн аргаар СиКа (λ=1.542 Å) анод бүхий Shimadzu Maxima 7000 дифрактометр ашиглан 0.02° алхамаар 10° - 90° хязгаарт гүйцэтгэсэн. Дээжийн өнцгийн кристаллитын дундаж хэмжээг Шеррерийн тэгшитгэлээр тооцоолов. Shimadzu IR-Prestige21 хувиргалттай хэт улаан фурье туяаны спектрометр (FTIR)-ийг ашиглан гарган авсан дээжид агуулагдах функциональ бүлгүүдийг хэмжилтийн 400 - 4000 см⁻¹ долгионы уртын завсарт тодорхойлов.

II. Онолын загварчлал

функционалын (HΦO) Нягтын онолд тулгуурласан [14,15] QUANTUM ESPRESSO багц програм [16-18]-ын тусламжтай Projector Augmented Wave (PAW) ойролцооллыг ашиглан цагаан тугалга (Sn)-аар хольцолсон шпинел Li₄Ti₅O₁₂-ын электрон бүтцийн тооцооллыг явуулав. Шпинел Li₄Ti₅O₁₂ нэгдэл нь [Li] 8а [Li_{1/3}Ti_{5/3}] 16d [O₄] 32e бүтэцтэй эгэл үүрэндээ нийт 56 атомыг агуулах бөгөөд Fd-3m огторгуйн бүлэгт харъяалагдана. Онолын загварыг боловсруулахдаа $Li_{3.9}Sn_{0.1}Ti_5O_{12}$ -ийн стехиометрийн харьцааг хадгалсан бүтцийг байгуулахын тулд эгэл үүрийг 3 дахин авсан 168 атом бүхий супер торыг байгуулж тооцооллыг явуулах шаардлага гарсан. 168 атом агуулсан супер тор бүхий системийг бодоход хэт их цаг хугацаа шаардагдах учир бид Li₁₂Ti₁₂O₃₂ (Li_{4.5}Ti_{4.5}O₁₂) стехиометрийн харьцаа бүхий 56 атомтой эгэл торыг сонгосон юм.

Бидний ашигласан туршлагын арга болох Zhang., [13] нарын судалгааны ажилд Sn атомууд нь Li-ийн атомын байршил дээр суусаныг харуулсан бөгөөд энэ нь орлуулах төрлийн хольцлол юм. 1-р зурагт онолын тооцоонд ашигласан кристалл бүтцийг харуулсан бөгөөд энд 8а байршил дахь нэг Li атомыг Sn-ийн атомоор орлуулан $Li_{11}Sn_1Ti_{12}O_{32}$ бүтцийг загварчиллаа. Тооцоог гүйцэтгэхэдээ эхний алхамд туршлагын утгууд дээр бэхлэгдсэн торын параметрүүдийг ашиглаж тогтвортой төлөвийн тооцооллоор системийн үндсэн

төлөвийн энергийг бодуулж, дараачийн алхамд төлөвийн нягт, хориотой бүсийн өргөнийг тооцоолов.

Зураг 1. Sn-аар хольцолсон шпинел Li4Ti5O12 нэгдлийн эгэл үүрийн бүтэц.

Суурь материал Li₄Ti₅O₁₂ болон хольцлогч атом Sn-ийн Li(1s²2s¹), Ti(3s²3p⁶3d²4s¹), O(2s²2p⁴), $Sn(4d^{10}5s^25p^2)$ валентын электронуудыг псевдопотенциалаар сонгон авч кристалл бүтцийн торын тогтмол болон атомуудын байршлыг зааж өгсөн. Тайралтын энергийг 40 Ry ба Monkhrost-Pack схемийг 56 атомтой системд 5х5х5 байхаар сонгож авав [19]. Нягтын матрицийн нийлэлтийг тооцооллыг энергийн алдааны утга 10⁻⁶-аас бага болоход зогсоохоор тохируулсан болно [20, 21].

ҮР ДҮН БА ХЭЛЭЛЦҮҮЛЭГ

Гарган авсан дээжүүдийн кристалл бүтцийг рентген дифракцийн арга ашиглан тодорхойлоход Li₄Ti₅O₁₂-96.7%, TiO₂-3.27% тус тус агуулагдаж байв. Рентген дифракцийн анализийг бид FullProf Suite програм ашиглан Ритвельдийн аргаар боловсруулалт хийв. Энд гарган авсан хоёр дээж нь CNF агуулсан эсэхээс үл хамааран кристалл бүтцийн хувьд өөрчлөлт гараагүй. Тэдгээр нь Fd-3m огторгуйн бүлэгт харьяалагдах, куб хэлбэрийн кристалл тор бүхий, торын параметр Li_{3.9}Sn_{0.1}Ti₅O₁₂ –ийн $a=b=c=8.357\text{\AA}$, $Li_{3.9}Sn_{0.1}Ti_5O_{12}$ /CNF ХУВЬД a=b=c=8.358Å гарсан нь бусад судалгааны үр дүнгүүдтэй тохирч байв [22]. 2-р зураг болон 3р зургаас харахад бидний гарган авсан дээжүүдийн рентген диффрактограммд 20 = 18.4°, 35.6°, 43.3°, 47.4°, 57.2°, 62.8°, 66.1° өнцгийн утгууд дээр өндөр цэвэршилт бүхий Li₄Ti₅O₁₂-ийн пик илэрсэн байна. Мөн CNF агуулсан дээжийн хувьд 20 =27° утгад илэрсэн нүүрстөрөгчийн пийк нь CNF нэгдэл агуулж байгааг илтгэж байна.

Зураг 2. Li_{3.9}Sn_{0.1}Ti₅O₁₂ дээжийн рентген дифракцийн хэмжилтийн спектрийн Ритвельд боловсруулалт.

Зураг 3. Li_{3.9}Sn_{0.1}Ti₅O₁₂/CNF дээжийн рентген дифракцийн хэмжилтийн спектрийн Ритвельд боловсруулалт.

Гарган авсан $Li_{3.9}Sn_{0.1}Ti_5O_{12}$ - ийн торын параметр 8.357 Å бөгөөд цэвэр $Li_4Ti_5O_{12}$ –ийн 8.352 Å [23] торын параметрийн утгаас их байна. Энэ нь цагаан тугалгын (Sn) атомын радиус нь лити (Li)-ийн атомын радиусаас их (R_{Sn} =141pm, R_{Li} =134pm) бөгөөд цагаан тугалгын (Sn) атом нь $Li_4Ti_5O_{12}$ нэгдэл дэх Li -ийн атомын байршилд суусантай холбоотойгоор торын параметр ихсэж байна гэж үзлээ.

Хүснэгт 1. Цэвэр Li4Ti5O12 болон гарган авсан Li3.9Sno.1Ti5O12 Li3.9Sno.1Ti5O12/CNF нэгдлүүдийн торын параметрийн харьцуулалт.

Торын параметр а (Å)	
Стандарт утга (Li ₄ Ti ₅ O ₁₂)	8.352 [21]
$Li_{3.9}Sn_{0.1}Ti_5O_{12}$	8.357
Li _{3.9} Sn _{0.1} Ti ₅ O ₁₂ /CNF	8.358

Рентген дифракцийн хэмжилтээс кристаллитын дундаж хэмжээг Шеррерийн тэгшитгэл ашиглан тооцоолоход Li_{3.9}Sn_{0.1}Ti₅O₁₂/CNF агуулсан дээжийн кристаллитын хэмжээ 39.97 нм буюу

CNF агуулаагүй дээжээс 1.37 нм-ээр их хэмжээтэй байсан нь (Хүснэгт 3) нарийн мяндас хэлбэр бүхий CNF агуулсантай холбоотой.

Хүснэгт 3. Гарган авсан дээж тус бүрийн кристаллитын хэмжээ.

Дээж	Кристаллитын хэмжээ D (nm)
Li3.9Sn0.1Ti5O12	38.604
Li _{3.9} Sn _{0.1} Ti ₅ O ₁₂ /CNF	39.972

Li_{3.9}Sn_{0.1}Ti₅O₁₂/CNF FTIR дээжийн спектрт 659.68 см⁻¹, 462.94 см-1 шингээлтийн завсаруудад илэрсэн пикүүд ΗЬ $Li_4Ti_5O_{12}$ нэгдлийн бүтэц дэх TiO₆ октаэдрүүдийн тэгш болон тэгш бус хэмийг харуулах бөгөөд шпинел Li₄Ti₅O₁₂ үүссэнийг харуулна [24]. 2926.25 см⁻¹ дээрх пик нь TiO₂ фазад харгалзана [25]. 1643.42 см⁻¹ нь хүчтэй С=С холбоог, 1559.51 см⁻¹ нь С-С холбоонд харгалзана [26]. Мөн 1040.6 см-1 утга дахь пик нь Li_{3.9}Sn_{0.1}Ti₅O₁₂ нэгдэл дахь Sn-O холбоонд харгалзана [27]. 4-р зурагт харуулсан нил улаан туяаны шингээлтийн спектрийн 1643.42 см⁻¹, 1559.51 см⁻¹, 1361.8 см⁻¹ утгууд нь СNF-д харгалзах пикууд болно. Эндээс гарган авсан дээж нь шпинел Li₄Ti₅O₁₂, TiO₂ титаны оксид болон CNF нэгдлүүд агуулж байгааг харуулж байна.

Зураг 4. Li_{3.9}Sn_{0.1}Ti₅O₁₂/CNF дээжийн FTIR хэмжилтийн спектр.

Онолын загварчлалын үр дүн

Sn-ээр хольцлосон Li₄Ti₅O₁₂ -ийн төлөвийн нягт ба хориотой бүсийн өргөнийг ерөнхий градиент ойролцооллын (GGA) аргаар тооцоолоход хориотой бүсийн өргөн E_g =1.35 эВ гарсан (зураг 5Б). Энэ нь цэвэр Li₄Ti₅O₁₂ -ийн хориотой бүсийн утга (E_g =3.16 эВ)-аас [28] багассан

байгаа нь Sn хольцын нөлөөгөөр цахилгаан дамжуулал сайжирч байгааг илтгэж байна. Хориотой бүс нь электроноор дүүргэгдээгүй Ті-3d орбитал болон дүүргэгдсэн О-2р орбиталд харгалзах энергийн утгуудын завсар үүсч байна. хольцлосон Li₄Ti₅O₁₂-ийн болон Sn-ээр Li₄Ti₅O₁₂-ийн төлөвийн нягтын энергээс хамаарах зураг 5-д үзүүлэв. хамаарлыг Төлөвийн нягтын графикаас харахад Ферми энергийн түвшинг дайран хольцын шинэ түвшин (impurity level) үүссэн нь Sn-ийн пик гэж үзэж байна. Учир нь энэ түвшин нь Sn-ий 5s орбиталын төлөв дээр проекцолсон төлөвийн нягттай таарч байв (Зураг 5Б).

Зураг 5. А) Цэвэр LTO-ийн нийт төлвийн нягт [20] болон Б) Sn-аар хольцлосон LTO-ийн төлөвийн нягтыг энергиэс хамааруулсан графикуудыг тус тус харуулав. Үүнд нийт төлвийн нягтыг хар өнгөөр, Ti-3d орбиталыг ногоон өнгөөр, O-2p орбиталыг улаан өнгөөр, Sn-5s орбиталыг цэнхэр өнгөөр дүрслэв. Ферми түвиинг тасархай зураасаар харуулав.

ДҮГНЭЛТ

Литийн ионы батарейн анодын материал болох шпинел Li₄Ti₅O₁₂-ийг цагаан тугалга (Sn)-аар болон нүүрстөрөгчийн нано мяндас (CNF)-ээр хольцлон нийлмэл материал хэлбэрээр гарган авч бүтэц болон шинж чанарыг судаллаа. Рентген дифракц болон нил улаан туяаны шингээлтийн анализын үр дүнгээс харахад цэвэршилт сайн байв. Мөн НФО-г ашиглан электрон бүтцийн тооцоог гүйцэтгэхэд Li_{3.9}Sn_{0.1}Ti₅O₁₂ бүтцийн хориотой бүсийн өргөн 1.35 эВ буюу цэвэр Li₄Ti₅O₁₂-ийн бүсийн өргөнөөс 1.81 эВ-ээр бага утгатай гарсан нь шпинел Li₄Ti₅O₁₂-ийг Sn-аар хольцолсоноор уг материалын цахилгаан дамжуулах чадварыг ихэсгэх боломжтойг харуулж байна.

ТАЛАРХАЛ

Уг тооцоог гүйцэтгэхэд боломж олгосон ШУА – ийн Математик, Тоон Технологийн хүрээлэнгийн Параллель тооцооллын төвд талархал илэрхийлье.

АШИГЛАСАН МАТЕРИАЛ

- Nasara, R.N., Lin, Sk. Recent Developments in Using Computational Materials Design for High-Performance Li₄Ti₅O₁₂ Anode Material for Lithium-Ion Batteries. Multiscale Sci. Eng. 1, 87–107 (2019).
- [2] TF Yi, Y Xie, YR Zhu, RS Zhu, H Shen. Structural and thermodynamic stability of Li₄Ti₅O₁₂ anode material for lithium-ion battery. Journal of Power Sources, (2013).
- [3] Zhao, Bote., Ran, Ran., Liu, Meilin., Shao, Zongping. A comprehensive review of Li₄Ti₅O₁₂ -based electrodes for lithium-ion batteries: The latest advancements and future perspectives. Materials Science and Engineering R 98, (2015).
- [4] Wang, Y., & Weng, G. J. Electrical Conductivity of Carbon Nanotube- and Graphene-Based Nanocomposites. Micromechanics and Nanomechanics of Composite Solids, (2017).
- [5] Sharma, Chandra S., Katepalli, Hari., Sharma, Ashutosh., Madou, Marc. Fabrication and electrical conductivity of suspended carbon nanofiber arrays, (2011).
- [6] Choi, JH., Ryu, WH., Park, K. et al. Multi-layer electrode with nano-Li₄Ti₅O₁₂ aggregates sandwiched between carbon nanotube and graphene networks for high power Li-ion batteries. *Sci Rep* 4, 7334 (2014).
- [7] Hao, YJ., Lai, QY., Lu, JZ. et al. Effects of dopant on the electrochemical properties of $Li_4Ti_5O_{12}$ anode materials. Ionics 13, 369–373 (2007).

- [8] S. Huang, Z. Wen, X. Zhu, Z. Lin, Effects of dopant on the electrochemical performance of -Li₄Ti₅O₁₂ as electrode material for lithium-ion batteries. J. Power Sources 165, 408–412 (2007).
- [9] D. Liu, C. Ouyang, J. Shu, J. Jiang, Z. Wang, L. Chen, Theoretical study of cation doping effect on the electronic conductivity of -Li₄Ti₅O₁₂. Phys. Status Solidi b 243, 1835– 1841 (2006).
- [10] Q. Zhang, M.G. Verde, J.K. Seo, X. Li, Y.S. Meng, Structural and electrochemical properties of Gd-doped Li₄Ti₅O₁₂ as anode material with improved rate capability for lithium-ion batteries. J. Power Sources 280, 355–362 (2015).
- [11] Q. Zhang, H. Lu, H. Zhong, X. Yan, C. Ouyang, L. Zhang, W^{6+} & Br⁻ codoped Li₄Ti₅O₁₂ anode with super rate performance for Li-ion batteries. J. Mater. Chem. A 3, 13706–13716 (2015).
- [12] Zhang,Biao., Huang, Zhen-Dong., Sei Woon, Oh., Jang-Kyo Kim. Improved rate capability of carbon coated Li_{3.9}Sn_{0.1}Ti₅O₁₂ porous electrodes for Li-ion batteries.Journal of Power Sources, (2011).
- [13] Zhang, Biao., Liu, Yusi., Huang, Zhendong., Oh, Seiwoon., Yu, Yang., Mai, Yiu-Wing., Kim, Jang-Kyo. Urchin-like Li₄Ti₅O₁₂-carbon nanofiber composites for high rate performance anodes in Li-ion batteries. J. Mater. Chem, (2012).
- [14] W. Kohn, L. J. Sham. Self-Consistent equations including exchange and correlation effects, Physical Review 140 (1965) A1133-1138.
- [15] P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Physical Review 136 (1964) B864-871.
- [16] P. Gianmozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazaaoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari R. M. Wentzcovich,

QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter. 21 (2009) 395502.

- [17] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. D. Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio Jr, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H. -Y. Ko, A. Kokalj, E. Kucukbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H. -V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Ponce, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, S. Baroni, Advanced Capabilities for Materials Modelling with QUANTUM ESPRESSO, J. Phys.: Condens. Matter. 29 (2017) 465901.
- [18] P. Giannozzi, O. Baseggio, P. Bonfa, D. Brunato, R. Car, I. Carnimeo, C. Cavazzoni, S. de Gironcoli, P. Delugas, F. F. Ruffino, A. Ferretti, N. Marzari, I. Timrov, A. Urru, S. Baron, QUANTUM ESPRESSO toward the exascale, J. Chem. Phys. 152 (2020) 154105.
- [19] H. J. Monkhorst, J. D. Pack, Special points for brillouin-zone integrations, Physical Review B 13 (1976) 5188-5192.
- [20] P.Gianozzi et al. Journal of Physics: Condensed matter. (2009)
- [21] P.Giannozzi *et al.* J. Chem. Phys. **152**, 154105 (2020)
- [22] Mahmoud, Abdelfattah., Amarilla, José Manuel., Lasri, Karima., Saadoune, Ismael. Influence of the synthesis method on the electrochemical properties of the $Li_4Ti_5O_{12}$ spinel in Li-half and Li-ion full-cells. A systematic comparison. Electrochimica Acta, (2013).
- [23] Y.Takahashi, K.Kataoka, K.Ohshima, N.Kijima, J.Awaka, K.Kawaguchi, J.Akimoto. J.Solid State Chem, (2007).
- [24] Zhou, Jin Hong. Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR. Carbon, (2007).

- [25] Erdem, Bedri., Hunsicker, Robert., Simmons, Gary., Sudol, David., Dimonie, Victoria., El-Aasser, Mohamed. XPS and FTIR Surface Characterization of TiO₂ Particles Used in Polymer Encapsulation Langmuir, (2001).
- [26] Li, Juan. Microwave solid-state synthesis of spinel Li₄Ti₅O₁₂ nanocrystallites as anode material for lithium-ion batteries. Solid State Ionics, (2007).
- [27] Ritu, Malik., Tomer, Vijay., Duhan, Surender., Nehra, S.P., Rana, Pawan. One-pot hydrothermal synthesis of porous SnO₂ nanostructures for Photocatalytic degradation of organic pollutants. American Scietific Publishers, (2015)
- [28] Sarantuya Lkhagvajav, Namsrai Tsogbadrakh, Enkhjargal Enkhbayar, Sevjidsuren Galsan, Pagvajav Altantsog. Structural and electronic properties of the spinel Li₄Ti₅O₁₂. Mong. J. Chem, (2019).