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Resonance states in the simple schematic two-body model 
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The aim of this work is to obtain resonance states in the simple schematic two-body model. 
We take up two-body systems, which are described by Schrodinger equation. To obtain 
resonance states, we apply a simple schematic potential and complex scaling method (CSM). 
In the CSM, the resonance wave functions are obtained as eigenstates together with bound 
states by carrying out the diagonalization of the complex scaled Hamiltonian. By finding 
eigenvalues, we can show the distribution of resonance states in the complex energy plane. 
As a result, we obtain 5 and 4 resonance states for ܬగ = 0ା, 1ି states, respectively. 

INTRODUCTION 

During the last several decade resonance problems 
have covered an important and crucial research area 
in nuclear physics. Recently, it has attracted much 
attention that the complex scaling method (CSM) 
[1-2] is successfully utilized for description of 
many-body resonant states in light and middle mass 
nuclei. Although many problems have been solved 
so far, but further researches are required still. 
In this study, the complex scaling method is applied 
to a simple schematic two-body model [3] and its 
reliability is confirmed. For this purpose, several 
resonance states of ܬ =  0ା  and 1ି  partial waves 
are investigated using the simple schematic 
potential. 

COMPLEX SCALING METHOD 

In the last quarter century, a remarkable 
development in the description of resonances in 
quantum many-body systems has been realized 
through application of the CSM.  
Originally, the CSM was proposed by Aguilar, 
Combes, and Balslev in 1971 [1]. Simon advocated 
this method as a direct approach of obtaining many-
body resonances. The use of “direct” implies that the 
resonance wave functions are directly obtained with 
complex energy eigenvalues of the quantum many-
body system by solving an eigenvalue problem of 
the complex-scaled Schrodinger equation, 
ఏ ߖఏܪ =  In the .ߠ ఏ with a real scaling angleߖఏܧ 
CSM, we take the imaginary value ݅ߠ as a parameter 
of the transformation.   
The CSM has been proposed to solve the resonance 
states in the similar way as bound state problems. In 
the CSM, the distance of the relative coordinate is 
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rotated as ݎ ⟶ ఏ݁ݎ  in the complex coordinate 
plane by introducing a real parameter ߠ. Therefore, 
the Schrödinger equation  

〈ߖ|ܪ  =  (1)                                       〈ߖ|ܧ
is rewritten as  

〈ఏߖ|(ߠ)ܪ  =  ఏ〉,                          (2)ߖ|ఏܧ

where ܪ(ߠ)  and ߖఏ  are the complex scaled 
Hamiltonian and the wave function, respectively. 
  ,operates on a function Ψ, that is (ߠ)ܷ

ఏߖ  = (ݎ)ߖ(ߠ)ܷ = ݁
య
మఏߖ(݁ݎఏ).          (3) 

The eigenvalues and eigenstates are obtained by 
solving the complex scaled Schrodinger equation 
Eq.(2). The eigenvalues of resonance states are 
found as ܧఏ = ܧ − ܧ /2, where߁݅  is resonance 
energy and ߁ -width of the resonant state. More 
detailed explanation of the CSM is given in Refs.[1, 
2]. The complex scaled Hamiltonian of inter cluster 
motion is given by  

(ߠ)ܪ  =  (4)                          .(ߠ)ܷିଵܪ(ߠ)ܷ

RESULTS AND DISCUSSIONSSIONS  

The Hamiltonian of the present model is given as  

ܪ = − ℏమ

ଶఓ ∇ଶ +  (5)                           ,(ݎ)ܸ

where 

(ݎ)ܸ = −8.0 exp(−0.16ݎଶ) + 4.0exp (−0.04ݎଶ) .  
                                                                              (6) 

For simplicity, we put 
ℏమ

ఓ = 1  (MeV fm2). This 

potential introduced in Ref. [3] has an attractive 
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pocket in a short range but a repulsive barrier at a 
large distance. Putting Eq.(6) in Eq.(5), we solve the 
Schrödinger equation (Eq.(2)). To solve the Eq. (2), 
we employ the Gaussian basis functions given as 

(ݎ̂)ݑ = ܰ(ܾ)ݎ exp ൬− ଵ
ଶ

మ ଶ൰ݎ ܻ(̂ݎ),             (7) 

where the range parameters are given by a geometric 
progression as ܾ = ܾߛିଵ ,  
݅ = 1,2, … , ܰ. 
In this calculation, we apply ܰ = 20 and employ 
the optimal values of ܾ and ߛ to obtain stationary 
resonance solutions.  

   
Figure 3. Distribution of energy eigenvalues of the ܬగ = 0ା 
wave. Symbols (b1) and (r1, r2, r3, r4, r5) represent bound and 
resonance solutions, respectively. We here employ scaling 
angle ߠ = 15. The solid line from the origin indicates the so-
called  2ߠ line describing the branch cut. 

 

Figure 4. Distribution of energy eigenvalues of the ܬగ = 1ି 
wave. Symbols (b1) and (r1, r2, r3, r4) represent bound and 
resonance solutions, respectively. We here employ scaling 
angle  ߠ = 15. The solid line from the origin indicates the so-
called  2ߠ line describing the branch cut. 

To obtain stationary values for the parameters of 
resonances, we apply the so-called ܾ  and ߠ 
trajectory methods. Using a property that is ܾ and ߠ 
trajectories should be orthogonal to each other, we 
can easily determine the stationary point of the 
resonance energy with high precision by drawing 
these trajectories for the obtained eigen-energies [4].  

We fixed Gaussian basis function’s length 
parameter ܾ from 0.15 to 0.25 and ߠ from 5 to 25 
for the ߠ trajectory. The ܾ trajectory was found to 
be roughly a circle. The true solution for resonance 
energy should be inside this circle, because the ܾ 
trajectory is orthogonal to the ߠ  trajectory. 
Therefore, we determined resonance energy as the 
center of the circle.  
When we plot both the ܾ  and ߠ  trajectories, we 
obtain an accurate estimate of the resonance 
position.  

 

Figure 1. Resonance energy eigenvalues of the ܬగ = 0ା wave 
by drawing ܾ and ߠ trajectories.  

 
Figure 2. Resonance energy eigenvalues of the ܬగ = 1ି wave 
by drawing ܾ and ߠ trajectories.  

In Tables 1 and 2, we show numerical values of the 
calculated bound and resonant states for the ܬగ =
0ା and 1ି waves respectively, and compare to the 
results (left) that takes from the Ref. [5]. 

Table 1. Bound and resonance states energies with decay widths 
calculated for the ܬగ = 0ାwave. 

ାwave* ା wave 
E(MeV) State E(MeV) State 

-1.928 Bound -1.928 Bound 

0.310-
݅10-6 Resonance 0.310-݅10-6 Resonance 
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1.632-
݅0.123 Resonance 

1.633-
݅0.123 Resonance 

2.249-
݅1.040 Resonance 

2.249-
݅1.075 Resonance 

2.854-
݅2.570 Resonance 

2.850-
݅1.800 Resonance 

  3.875-
݅2.575 Resonance 

* From previous data [5] 

Table 2. Bound and resonance energies with decay widths 
calculated for the ܬగ = 1ି state. 

ି wave* ି wave 
E(MeV) State E(MeV) State 

-0.675 Bound -0.675 Bound 

1.171-
݅0.005 Resonance 

1.171-
݅0.005 Resonance 

2.031-
݅0.489 Resonance 

2.018-
݅0.493 Resonance 

2.832-
݅1.199 Resonance 

2.830-
݅1.510 Resonance 

3.934-
݅1.788 Resonance 

3.655-
݅2.500 Resonance 

* From previous data [5] 

It can be seen that from Tables 1 and 2, two 
calculated results are similar to each other.          

SUMMARY 

In this study, we employed the simple potential 
model which gives a bound and several resonance 
states for ܬగ = 0ାand 1ି waves. Present calculated 
results are compared with the previous calculated 
result and we obtained both results are similar to 
each other.  
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