PRODUCTION OF RADIOACTIVE ISOTOPES BY PHOTONUCLEAR REACTIONS USING THE MT-25 MICROTRON

O.D. Maslov, S.N. Dmitriev A.V. Sabelnikov, M.V. Gustova, L.G. Molokanova, A.G. Belov Joint Institute for Nuclear Research, Flerov Laboratory of Nuclear Reaction 141980 Dubna, Moscow reg., Russia

The wide circulation of application of radioisotopes in nucle medicine, biochemical behavior of elements and environmental would impossible without development of new methods for theirs of production.

The FLNR MT-25 microtron is an important installation for the

production of wide variety of man-made radioactive isotopes.

On propose of academician of Flerov G.N. in 1980 year experiment were started at the microtron for producing of ¹²³I.

123T

A method of producing a medical preparation of iodine-123 was developed. This isotope is very useful for medical diagnostics. The production process is as follow:

¹²³I is obtained in photonuclear reaction ¹²⁴Xe (γ, n) ¹²³Xe \rightarrow ¹²³I. (T_{1/2} =13.2 h) E_{γ} =159 keV. Enreached ¹²⁴Xe target is used. Productivity is I - 20 mCi [1].

Despite rather low productivity of this method the microtrons can compete with more expensive in operation the proton cyclotrons and to provide needs of separate clinics and regions. The complex installation for production ¹²³I consists of three main units - gas target of high pressure with system of diagnostic of a gamma-beam, chemical boxing with cell for concentration ¹²⁴ and control of its quality.

⁷⁷Br

A similar method may be used for the production of ⁷⁷Br according the ⁷⁸Kr(γ , n)⁷⁷Kr (EC) \rightarrow ⁷⁷Br reaction on the enreached ⁷⁸Kr.

 99m Tc, $T_{1/2} = 6.02$ ч; IT (100 %); Ey = 140.5 кэВ (87.7 %).

The short lived isotope of 99mTc is applied as a radiotracer for studion of chemical behavior of technetium in the environment as well as in medicine for diagnostics of the urological and thyroid gland diseases.

As a result of study of the 100 Mo (γ , n) 99 Mo reaction some practical conclusions can be made. So the irradiation of 10 g 100 Mo (100 % of enrichment) by the electron current equal 25 μ A with the 24 MeV bremsstrahlung for 100 hours produces 5.5 10^{10} Bq (55 GBq) of 99 Mo.

The irradiation of 10 g the natural molibdenum (100Mo-9.63 %) in the

above conditions forms 5.3 109 Bq (5.3 GBq) of 99 Mo [2, 3].

95mTc, (T_{1/2}=60 d),

Analysis of ⁹⁹Tc in the environment and technological processing have been interested because of a long term radio ecological effect of ⁹⁹Tc due to its long half-life. One of the problems on ⁹⁹Tc analysis is a tracer since there is no stable isotopes in Tc. Development of ⁹⁹Tc determination by ICP-MS enables us to usc ^{95m}Tc as a yield monitor. The radiochemical yield is evaluated by gamma spectrometry of ^{95m}Tc and ⁹⁹Tc is determined by mass spectrometry without any interference by ^{95m}Tc tracer added to the sample.

Production of 95m,8 Tc is possible in the Ru(γ , n)Ru \rightarrow 95m,8 Tc reaction

[3].

The irradiation of 1 g ⁹⁶Ru (100% enrichment) with 25 MeV bremsstrahlung (the electron current equal to 20 μA) for 100 hours produces 0.2 mCi ^{95m}Tc and 0.6 Ci ⁹⁵Tc.

143Pm

The isotope can be produced by photonuclear reactions: 144 Sm(γ , p) 143 Pm, and 144 Sm(γ , n) 143 Sm \rightarrow ES, β ($T_{1/2}$ =8,8 m) \rightarrow 143 Pm.

After irradiation of 1 mg of enriched (86,6%) ¹⁴⁴Sm with microtron 25 MeV γ-rays for a period of 5 hours, 10 kBk of activity could be obtained. The beam current was 10 μA. This method of producing ¹⁴³Pm is very effective, taking into account the low cost and the very high natural physical purity of its production using bremsstrahlung γ-quanta [4].

The radioisotope can be used as a standard for the calibration of γ -ray detectors (E γ =742 keV) and also finds application in nuclear medicine for

curing the metabolism of animals.

225 AC

One of the most trends of the modern nuclear medicine is the application of new radioactive isotopes for development of diagnostic methods and treatment of the various diseases. From this point of view the production of 225 Ac ($T_{1/2} = 10.0$ d, $E_{\alpha} = 6.9$ MeV) represents a large interest,

especially for the tumor's metastases radiotherapy. It may be used both therapeutic agent [5] and a source for short-lived ²¹³Bi production that is al

of interest for leucaemia therapy.

The 226 Ra(γ , n) reaction is considered as one of perspective method for 225 Ac production. It is necessary especially to note, that at an irradiation 226 Ra of γ -quanta there are no channels of reactions resulting to the formation of 227 Ra ($T_{1/2} = 42,2$ min) and 227 AC ($T_{1/2} = 21,77$ y), i.e. the isotopic purity 225 Ac preparations will be determined only by radiochemical purity of the initial 226 Ra. From experimental data follows[6]: 1. The 225 Ac yield has been estimated as 550 Bq/ μ A·h·mg of 226 Ra.

2. The irradiation of 10 mg (1 g) of ²²⁶Ra for 100 hours with

average

electron beam current ~20 μA by the MT-25 will allow to produce about

0.3 mCi (25 mCi) of 225 Ac.

The use of linear electron accelerator with electron beam current up to

 $500~\mu A$ would provide production of the same quantities of ^{225}Ac for

4-5 hours.

 It is advantageous to repeat the ²²⁵Ac recovery procedure several times for

its more full extraction.

237U

Due to its nuclear-physical characteristics ($T_{1/2} = 6.75$ d; $E_7 = 208$ keV (21.7%)), ²³⁷U is the best radiotracer for research on the behaviour of U isotopes in various chemical and biological systems. However as there are no convenient reactions for its production, this isotope does not find practical use.

The possibilities for production of ²³⁷U in the ²³⁸U(γ, n) reaction on the compact electron accelerator MT-25, using a recoil atoms collection, were examined.

The developed method allows producing 237 U on the MT - 25 microtron with purification from 238 U in 100 - 1000 times directly during irradiation without following masseparation.

236Pu

One of the best-suited radiotracers permitting the determination of the isotopic ratio ^{239,240}Pu/²³⁸Pu, which enables identification of the source of contamination of the environment (nuclear tests, nuclear plant accidents, etc.) is ²³⁶Pu.

²³⁶Pu must meet stringent purity requirements. In particular, the concentrations of ²³⁸Pu and ^{239,2-10}Pu should not exceed (Bq/Bq) of 10⁻³-10⁻⁴ and 10⁻⁶-10⁻⁷, respectively. The existing methods of the ²³⁶Pu production when satisfy these requirements are of low efficiency and expensive due to the need for an additional purification followed by mass separation procedures.

Expenditures on the production of 236 Pu in the reaction 237 Np (γ ,n) are 10 times lower if comparing with reactions 235 U(α ,3n) (with the following mass separation) and 235 U(d,n). It allows us to consider that the reaction 237 Np (γ ,n) is the most optimal one for producing 236 Pu with isotopic purity of 10^{-6} - 10^{-7} Bg/Bg [7].

The possibilities of producing of radionuclides on the MT-25 microtron are listed in the Table. It contains the data referring to the production mode, estimates of expected yields.

Table. The production of radionuclides using of the MT-25 microtron

Nuclido	Nuclear reaction	Preparation procedure	Yield, Bq/µA·h
⁷⁷ Br	78 Kr(γ , n) 77 Kr \rightarrow 77 Br	Chemical	10 ⁶ /g ⁷⁸ Kr
⁹⁹ Mo→ ^{99m} Tc	¹⁰⁰ Mo(γ, п) ⁹⁹ Mo→ ^{99m} Tc		2.2·10³/mg¹ [∞] Mo
95mTc	⁹⁶ Ru(γ, n) ⁹⁵ Ru→ ^{98,m} Tc		3.8·10 ³ /mg ⁹⁶ Ru
95 ₆ Tc			1.4-10 ⁷ /mg ⁹⁶ Ru
¹²⁴ Xe→ ¹²³ I	124 Xe(γ , n) 124 Xe \rightarrow 123 I		1,5·10 ⁶ / g ¹²⁴ Xe
¹⁴⁴ Sm → ¹⁴³ Pm	$^{144}\text{Sm}(\gamma, n)^{143}\text{Sm} \rightarrow ^{143}\text{Pm}$		2·10 ⁴ /mg ¹⁴⁴ Sm ⁸⁷ %
²²⁵ Ac→ ²¹³ Bi	226 Ra(γ , n) 225 Ra $\rightarrow ^{225}$ Ac		5,5·10 ² /mg ²²⁶ Ra
237U	²³⁸ U(γ, n) ²³⁷ U	Recoil	10 ³ /mg ²³⁸ U
²³⁶ Pu	237 Np(γ , n) 236 Np \rightarrow 236 Pu	Chemical	5/mg ²³⁷ Np

The data presented in the Table demonstrate that a large-scale production of may be organized on the microtron.

CONCLUSION

99m Tc The irradiation of 10 g 100 Mo (100% enrichment) with 25 Mi bremsstrahlung (the electron current equal to 20 μA) for 100 hours product 4.4·10¹⁰ Bq (44 GBq) of 99 Mo.

The irradiation of 10 g natural molybdenum (100Mo-9.63 %) in the abc conditions forms 4.2 109 Bq (4.2 GBq) of 99Mo, that corresponds operating characteristics of industrial generators.

The obtained results are shown that it is possible to prepare 9910 Tc(99 M.

generators using the MT-25 microtron.

2. 95m Tc. The irradiation of 1 g 96 Ru (100% enrichment) with 25 Me bremsstrahlung (the electron current equal to 20 μ A) for 100 hours product 7.4·10 9 Bq 95m Tc and 8·10 9 Bq 95 Tc.

7.4·10⁹ Bq ^{95m}Tc and 8·10⁹ Bq ⁹⁵Tc.
3. ²²⁵Ac. The irradiation of 1 g ²²⁶Ra with 25 MeV bremsstrahlung (1 electron current equal to 20 μA) for 100 hours produces ~ 10⁹ Bq ²²⁵Ac.

4. ²³⁷U. The irradiation of 10 mg ²³⁸U with 25 MeV bremsstrahlung (telectron current equal to 20 μA) for 10 hours produces ~ 10⁶ Bq ²³⁷U.