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Geiger-Nuttall law, which describes a dependence of the disintegration constant on the range 

of α-particles, was deduced using the Gamow theory describing the passage of the α-particles 

through the Coulomb barrier by the quantum mechanical tunneling effect. Ground-to-ground 

state α-transitions for natural and artificial α-active nuclides were analyzed utilizing the 

Geiger-Nuttall rule. From rough analysis five group-like branches on the dependence of α-
decay half-lives on α-particle energy was observed. Detailed analysis shows that precise 

linear dependence of the logarithm of α-decay half-lives on the reciprocal of square root of 

the α-particle energy for even-even isotopes of the U, Pu and Cm there are. However, for 

some even-even isotopes of the Po, Ra and Th regular behaviour of mass numbers was 
broken. This non-regularity of the mass numbers on the Geiger-Nuttall line is explained by 

the nuclear shell model.  
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I. INTRODUCTION  

The alpha decay is a disintegration of the 

radioactive nucleus which emits an α-particle 

consisting of two protons and two neutrons. In 1911 

Geiger and Nuttall established [1] an empirical law 

which describes a dependence of the disintegration 

constant on the range of α-particles.  Energy of the 

outgoing α-particle is usually lower than potential 

energy of the daughter nucleus [2]. Although from 

the view point of the classical mechanics it is 

unclear how alpha particle can overcome from the 

nuclear potential, Gamow theory [3,4] can describe 

the passage of α-particles through the Coulomb 

potential barrier by the quantum-mechanical 

tunneling effect.  

In this work the Geiger-Nuttall law deduced from 

the Gamow theory and ground-to-ground state α-

decay data were systematically analyzed using this 

law and the nuclear shell model deductions.  

II. THEORETICAL BACKGROUND 

The Geiger and Nuttall law [1] relates the decay 

constant of a radioactive isotope with the range of 

the α-particle as following:  

       BRA +=  log)log( .                 (1) 

Here: λ is the disintegration constant, 

λ=0.693/T1/2, where T1/2 is the half-life; Rα is the 
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range of the α-particle,
nER  ~  where Eα is the α-

particle energy; A and B are the constants. Then, the 

Geiger-Nuttall law can be rewritten as following: 

b
E

aT +=


1
)ln( 2/1 .             (2) 

The formula (2) can be deduced from Gamow 

theory [3-5]. Penetration probability of α-particle 

through potential barrier is determined by [5,6]: 
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Here: mα is the mass of the α-particle; V(r) is the 

potential energy of the daughter nucleus; R and Ro 

are the inner and outer classical turning points, 

respectively (Fig.1).  

 
Fig.1. Alpha-particle penetration through the potential 

barrier.  
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The inner classical turning point, R, can be obtained 

for square potential well as a daughter nuclear 

radius: 

                             
3/1

0 DArR =                         (4) 

where: AD is the mass number of the daughter 

nucleus and r0=1.25∙10-13cm. For the potential 

energy of the daughter nucleus, V(r), we can use the 

Coulomb potential as a first approximation: 

                      
r

Ze
rV
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)( =                                  (5) 

where: e is the elementary charge; and Z is the 

proton number of the daughter nucleus. Then, from 

Fig.1 the outer classical turning point can be 

determined from following expression:  
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So, the formula (3) can be rewritten in the form  
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The following simple substitutions are used to 

calculate the integral in Eq.(7):  

0R

r
x =   and 

0

0
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R
x = .              (8) 

Then, from the expression (7) can be gotten 

following formula: 
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The integral in Eq.(9) can be taken as follows: 
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Here the approximation of x0<<1 was used. If we 

use the substitution x=sin2θ the integral in Eq.(10) 

is taken as following:  
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So, the integral in (9) is given by  
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Then, from Eqs.(7), (9) and (12) the following 

formula can be obtained 









ZRme

E

mZe
T 2

2 822
)ln(


+− .        (13) 

Taking into account an α-clustering effect, the 

disintegration constant for α-decay can be expressed 

as following:  

        Tf= ,           (14) 

where:  is the α-clustering factor; fα is the 

collision frequency of the α-particle in the potential 

barrier of the daughter nucleus. In the case of one 

body approximation [7] the α-clustering factor can 

be assumed as fα=1. Then, the Eq.(14) can be 

rewritten in the form  

   Tf
T
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The collision frequency of the α-particle can be 

obtained as  
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From Eqs.(15) and (16) the half-life is given by  
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So, from Eqs.(13) and (17) can be got following 

expression  
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Then, the Eq.(18) can be rewritten in the following 

form  

b
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where:    
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It can be seen that the formula (19) is the same as 

the expression (2) which was directly written from 

the Geiger and Nuttall law (1). It should be noted 

that α-particle energy under logarithm is included in 

the parameter b which can be considered almost 

constant in comparison with E/1  in the 

Eq.(19). Also, the proton number Z in Eqs.(20) and 

(21) can be taken as an effective and average value  

for all considered nuclides. Thus, the Eq.(19) will be 

utilized for systematical analysis of known 

experimental data of the α-decay.   

III. RESULTS OF ANALYSIS AND 

DISCUSSION 

Decay data of the ground-to-ground state α-

transitions for over 450 natural and artificial alpha-

active nuclides [8-10] including rare-earth and 

super-heavy elements were analyzed using the 

Geiger-Nuttall law (19). The dependence of the 

logarithm of α-decay half-lives, T1/2 (sec), on the 

reciprocal of square root of the α-particle energy, 

Eα(MeV), for studied isotopes is shown in Fig.2.  

 
Fig. 2. The logarithm of α-decay half-lives versus the 

reciprocal of square root of the α-particle energy. 

From the preliminary and rough analysis, it was seen 

that five group-like branches in the dependence of 

half-life on the α-particle energy were observed 

[11].  

The detailed analysis shows that precise linear 

dependence of the logarithm of α-decay half-lives 

on the reciprocal of square root of the α-particle 

energy for even-even isotopes of the U, Pu and Cm 

there are (Fig.3). Also, mass numbers of these 

isotopes are regularly increased along the line 

corresponding to the Geiger Nuttall law.  

At the same time for some even-even isotopes of the 

Po, Ra and Th such regular behaviour of the 

dependence of the lnT1/2 versus 
E/1 was broken 

(Fig.4).  

 

 

 
 

Fig. 3. The same as in Fig. 2 for isotopes of the U, Pu and 

Cm.  

It can be seen from Fig.4 that 196,198,208,210Po, 214Ra 

and 216Th are off the regular behaviour of mass 

numbers which are increased along the Geiger-

Nuttall law line. REN Zhong-Zhou et al. [12] 

attempted to explain this effect by the nuclear shell 

model. For the isotopes of 210Po, 214Ra and 216Th 
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number of neutrons is, really, N=126 (magic 

number) and neutron shell is closed (see Fig.5). 

 

 

 
 Fig.4. The same as in Fig. 2 for isotopes of the Th, Ra 

and Po. 

Next energy levels are usually split from the closed 

shell by appreciable energy gap.  

So, sudden breaks of the regular behaviour of mass 

numbers for the 208,210Po, 214Ra and 216Th are, 

perhaps, caused by the gap of energy levels around 

magic number N=126. Similar non-regularity for 

the 196,198Po can be explained by closing the subshell 

3P1/2 (N=112). Also, steep leaps for isotopes 252Cf 

and 254Fm on the Geiger-Nuttall lines were observed 

(see Fig.6). 

 

Fig. 5. Energy levels of the nuclear shell model [13]. 

 

 
Fig. 6. The same as in Fig. 2 for isotopes of the Fm and 

Cf. 
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In these cases, the neutron number N=154 and the 

subshell 1i11/2 is closed. In addition, a straight 

relation between the ln(T1/2) and 
E/1  appears for 

isotonic chains with N=124, 126, 150 and 152 [12] 

(see Fig.7).  However, theoretical explanation of this 

regularity, as far as we know, is not available. 

 
Fig. 7. The same as in Fig. 2 for isotonic chains of N=124, 126, 150 and 152. 

 

IV. CONCLUSIONS  

1. The Geiger-Nuttal law was deduced from the 

quantum Gamow theory. The ground-to-ground 

state α-transitions for natural and artificial ~450 

α-active nuclides were analyzed using the 

Geiger-Nuttall rule. Five group-like branches for 

considered nuclides were observed.  

2. Precise linear dependence of the logarithm of α-

decay half-lives on the reciprocal of square root 

of the α-particle energy for even-even isotopes of 

the U, Pu and Cm were established. Mass 

numbers of the isotopes are regularly increased 

along the Geiger-Nuttall line.  

3. For some even-even isotopes of the Po, Ra and 

Th regular increasing the mass number along the 

Geiger-Nuttall line was broken. These results 

were explained by the nuclear shell model.  

4. A straight relation between the lnT1/2 and 
E/1  

appears for isotonic chains with N=124, 126, 150 

and 152. A theoretical substantiation of this 

regularity, as far as we know, is not available. So, 

it is interesting to investigate this effect in the 

future. 
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