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Abstract

We propose a theory for the description of slow inelastic collisions
between charged particles and simple atomic systems based on a T-
matrix approach. Using an eikonal distortion to describe the heavy
particle motion, the T--matrix is obtained by the stationary phase
approximation. In result, the ionization cross section is expressed
by the product between the width of decay of the Yquasimolecular”
system formed during the collision and a surviving probability of the

. heavy particle in elastic channel. '

1  Introduction

The study of slow collisions of heavy particles with atoms has many physical
and chemical applications. But the theoretical description of siow collisions '
is complicated due to inaccessibility of standard perturbation theory since -
the projectile velocity is smaller than the Bohr velocity.

. Over the last years, in connection mainly with mesic--atom processes

and muon catalyzed fusion, several methods have been developed to de- - -

scribe slow collisions of negative particles (muons and hadrons) with sim-
ple atoms:diabatic state [1], classical-trajectory Monte-Carlo [2], classical-
quantal coupling [3], and coupled-channels semiclassical approximation [4,5].
However, none of these methods have been formulated in a general enough
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framework to extend their applicability to a large range of experimental con-
ditions.

In this paper we propose a more general theory for ionization of atoms

by slow impact of charged particles based on a distorted wave T'-matrix ap-

proach. Previously a T-inatrix approach has mainly been utilized to describe
fast and intermediate. collisions (6,7].

The paper is organized as follow: in section 2 we derive the impact pa-
rameter representation of the T-matrix. In section 3 the distorted waves
and perturbations are derived in two different cases: one using a molecular
and one using an atomic basis for the electronic wave function in the initial
state. Continuing in section 4 we use a stationary phase approximation valid

at slow projectile velocities to derive a closed form of the transition matrix

for slow negative projectile impact. Atomic units will be used throughout
unless otherwise noticed.

2 The impact parameter representatlon of
the T-matrix

. The prior form of the transition matrix for electron emission in ion-atom

collisions, in the distorted wave formulation. may be written as

Tyi =< ¥ (rr,Re)|Wil®f (rr. Rr) > +T° (1),

" where \I’;(rr, R7) is the exacrt scattering state compatible with the consid-
ered final channel, and W; is the perturbation in the initial channel given,

by

W;]@?(PT,RT) D= {E - H}ld;?(r'r,R'r) > . (2)

The second term, 7’2, is the surface term which is normally considered small
in ion-atom collisions (in the D2C theory [7] it may be show to vanish ex-
plicitly due to orthogonal between the initial and final electronic states). De-
scribing the heavy particles in the final channel as i, (Rr) Dy, (Rr), where
DK (R7) is a elastic-channel distortion factor and ¢k .(R7) is a plane wave.
we ma.y write the final channel wave function in the following form:

II“!(TT,RT) — wRTSOK;(RT)DK,(RT)" . (3)

- 22

e —

A —— A —— LS



where v » 1s the electronic part of the final wave function. Tlie corresponding
T-matnx Is now given by

[ =< ﬂ!{T@KI(RT)DR,(R)HV;](I)?'(I'T, Rr) > .(4)

and from this the six dimensional cross section is' thereafter obtained in the
standard way:

-

i = kr K (271-)
dBr dEx, du, dk, !

T 6)

Here E7 = 1/2k% is the final electronic energy ancl Ex, = 1/(2u)R'} the
energy associated with the heavy particles in the final channel.

When only interested in the double differential cross section for the ejected
electron, we have to integrate the K s-coordinate out. of the expression in eq. 5

do LT( n‘)"
dEy dQy,

L 12K — €

v

[ TR, ~ K ). (6)/
The last encrgy-conservation delta-function guar_anties that only processes
which are allowed by encrgy conservation are summed. We are accordingly
left with a two-dimensional integr ation over the components of K, perpen-
dicular to v.

Using Parsevel’s theorem we may transform eq. 6 to a two dimensional
integration cf the Fourier transform of the T-matrix. Defining K, and K,
as the components of K, parallel and perpendicular to v respectively. the
two dimensional Fourier transform of the T-matrix in eq. 4 is given by

Ty = (ér)—x,fg < Yk, (rr, Rr)exp('iK,”‘RT)u;(RT) 0 .
{7 J dK;, exp(i(Rr — b)KfL)}IW-I‘P-*(rr. Rr) > (7)

where we have neglected the explicit dependence on K, in DK (this ap-
proximation is equivalent to a straight line Eikonal a.pploxlmatlon which is
commonly accepted as an accurate approximation in ion-atom collisions).

In order to proceed we need to write the initial wave funct.ion in a form
similar to the final wave function in eq. 3,

8} (r7, R7) = prox. (Rr) Dk, (R7). d ()

-
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- between the heavy particles.

s

Here D*{(i(Rr) is a distortion factor describing the elastic scattering of the
heavy particles due to the distortion potential U;. The inner integral over
K, in eq. 7 gives a delta function, which takes away two dimensions from
the outer integral. We finally find '

T = (2n)2 %, dZ expli( K — K7,)2)[D; (Rp)) Dic, (Rr)
(¥x,(vr, Rr)|Wiler(rr, RT))er ~ (9)

where the inner integral, ( | | )rp, is a three dimensional integral over r7.

3 - Determiriing distortion potential and per-
turbation in the initial channel

When the T-matrix is examined in a multichannel representation it appecars
natural to choose the distortion potential in such a way thar diagoual terms
in the coupling matrix vanishes [9): '

< ®}|E - H|®} >=0 (10)

The perturbation W; will depend on how we choose the heavy particle dis-
tortion potential and which potentials are included in the electronic part

_ of the functions, wr. For slow projectile velocities it is natural (and essen-,

tial) to choose a molecular or two-center wave function for ¢or. For fast and
intermediate velocities we may approximate 7 by an atomic state.
At first we definc a distortion potential and a perturbation operator in

the molecular picture. In this case (o7 is the solution of the equation

her(rr, Rr) = €i(Rr)er(rr, Rr) . (11)
wherP;
1
] h= —jz-Vf.,,. + Vp(rr) + Vp(rp). _— (12)

s the electronic two-center hamiltonian and is ¢;( R¢) is the electronic {adi-
abatic) term. Both @1 and ¢; depends parametrically on the distance, Rr.-

5%
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Substitution of eq. 8 with o7 defined by eq. 11 into eq. 10 we obtain in
—e eikonal approximation a distortion factor D, of the following form:

’

Dk (Rr) = exp{~ [% U(b,2) dZ},
 Ui(R)= —er + ¢i(R) + Vpr + %”H.-,-(R) (13)
—here er is the electronic ‘binding energy and the diagonal non-adiabatic
—1;.1trix clemcgt H;; is given by
Hii = (e1| VR loT)- S (14)
Jsing this icitial state we from eq. 2 obtain the perturbation

v 1 Vi 8
Bef 4 {222 — H) (15)
2u” @ o
Secondly. using an atomic state as o we may szmlially derive the follow—
_ng distortion potential and perturbation:

W; =1v

Ui = (e1lVeloT)er + Ver
W; = Vp — (oriVelerher (16)

" The distortion potential for the heavy particles in the final channel could °
‘i principal be derived in a sirnilar way. To order O(+ =) we find:

Uy(R) = Ver(R) o (17)

This approxmlat:on of the final distortion potential is equwalent to neglect:ng
the continuum-continuum coupling [4,3]. .

. Going back to eq. 9, our final expression for the l"ounc transform of the
T matrix is sherefore given by:

CT= (2m)72 2, dZ exp(—iS(b.Z)) -
(Y (rr, Re) Wi lor(rr, RT))er (18)
where S(R) is given by .
; 5 | _
8ib,2)= [ {Ui(.b) = Us(2,b) + e — Br} d2). (19)
- Here we have used the energy conservation conditio;t Kp—K;=(er— Er)/v.
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=N (b, Z) =4 (20)

5V 7 =4 20),
#irivi) Jy}'u;_”n‘,“;f;‘, Ly e nomls, 7, Nltl\\{\h;‘;

Wil 2,) % o3 = G0
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wral an €q. 18 10 the stationary point approximaiion we
bk gy

Fh 2 jydis Xpas, Vi o] ~S(b. 2) + TSigntd/d=(U, — (1)}
O, (09 R W, fer(ry. R)jizaz, (22

N e

: Ak thivishmid, (2% = 0), we lroduce the differones
(B 2 = Vi 2) 4 op= Us(b,2) (23} |
M -,-.-.'u;-e;;.‘”-'-, Frefwiadn gaiive heavy particies. - f\._u",s.‘., K= and 7). and
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R '!T;{-,.---.'f\ Z) = Ry, and thai for Ry < R=s s '
' w{R7r)>0 (24)
This indieates thai for Re £ As the Quasi-moleculer wiaten,. (M=-4).
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We can utilize the total decay width to determine an intuitive normalization

\lire

Fig 1: Distortion potentials in the initial and final channels.

The intersection point, R, corresponds to the boundary of the
continuum for (M~ A) = M~ + A* + e, (Er = 0). The dashed
part of the U;-curve indicates that for R < R, the system (M~—A)
may decay classically. )

of the autoicnization state [8). However, when thé amplitude for finding the
electron in a particular state decreases, the amplitude for finding the heavy
particle system in the initial channel decreases in a similar way. We may
accordingly write a normalization for the heavy pa.rticle wave function as:

Rr [(b,Z
oK (R)DE (Ra) = expl—3 [ o) azyou (Rr)DY (Rr)  (26)
We finally obtain the expression for the.double differential cross section as _

dO' Pk,-(b, Z,}P(b, Z!) - : -
vz_ ] db (27)

dET koT |d/dZ (U; — Uiy)]
where :
Cip = 27| (Y, [WileT)|? IEr-w(Rs] (28)
is the pa.rtlaJ width of decay at point Rt = R, and
k «I(b.2) 5 ' \
P(b, Z,) = exp(— f I(.2) dZ) - (29) -
¥ L A
is the surviving probability (probability to reach the point Ry = R, of //-”AE
lhe heavy particle in the initial channel. The interference term provides a j !
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4 The T-matrix in the stationary phase ap-
proximation

-
For small collision velocities, (v < 1), LS(b, Z) in eq. 18 is large and therefore
the phase oscillates rapidly. In this case the main contribution to the Z-
integration is drawn-in the vicinity of the stationary phase points. The
stationary points (or saddle points) are determined by the equation:

. d ' 5
o Ru i - - : 20)
._ . 17 S(b,Z2)=0 ( _
which corresponds to the points, Z,, satisfying

Ui(b. Z,) + er = Uy(b, Z,) + Er (21)

Evaluating the integral in eq. 18 in the stationary point approximation we
obtain ‘

Tti = W Y z-2, ,XW——-—-— MexP{_iS(b' Z)+ ZSignid/dz(L; - UM}

: (ks (r7, R) [Wilor(rT, Rs))| 222, (22
At threshold, (ET = 0), we introduce the difference .
w(b, Z) = U.'(B, Z)+er—Uy(b,2) (23)

In collisions between negative h'e'avy particles, M~ (=, 7=, K~ and j). and
atomic systems, A, it is readily shown that eq. 23 has roots on Lhe real axis.
‘Rr(b, Z) = Rs, and that for Rr < Rs

- w(Rr) 20 (24)

This indicates that for Ry 5' Rs the quasi-molecular system, (W~ A).
can make classically allowed transitions which leads to decay (ionization).
" A typical view of the potentials is shown in figure 1. The energy of the
ejected electron is determined by the transition point, £y = w(Rr) (see
figure 1.). In the region Rt < Rs the system (M~ A) can be interpreted as
a "quasi-mo_ecule” in-an autoionization state with the totai width of decay
given by 4 ' X

C(R) = 27 [ dBr dk (I Wiler)I*S(Br - w(Rr). (25)
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We can utilize the total decay width to determine an intuitive normalization

-
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Fig 1: Distortion potentials in the initial and final channels.

The intersection point, R, corresponds to the boundary of the
continuum for (M~ A) - M~ + A* + e, (Er = 0). The dashed
part of the [/;~curve indicates that for R < R, the system (M~ A)
may decay classically. -

f the autoionization state [8]. However, when the amplitude for finding the
lectron in a particular state clecreases, the amplitude for finding the heavy
)article system in the initial channel decreases in a similar way. We may
ccordingly write a normalization for the heavy particle wave function as:

; T Z
ox (Rr)DY (Br) > expl—3 [ 22l azyop (Re)DE (Re) (20

Ve finally obtain the exmession for the.double differential cross section as

do P (42, P(b: %) (e
dBr d, v / W 4] dZ(U; - ;)] Wil
vhere :
Ty = 27|(Yr [Wilor)? | Er=w(Rs) _ (28)
s the partial width of decay at point Rr = R, and ‘ '
P(b, Z,) = exp(— f F(b 2) dz) (29)

s the surviving probability (probablht‘.y to reach the point Ry = R, of
he heavy particle in the initial channel. The interference term provides a
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