6. G.R.Laurer, J.Furfaro, M.Carlos, W.Lei, R.Ballad, and T.J.Kneip V. Energy dispersive analysis of actinides, and other elements in Energy dispersive analysis of actinides, and other elements in soil and sediment samples. XRF Environmental applications, p.201-208. L.C.Chandola, P.P. Khanna X-ray fluorescence analysis of thulium oxide for rare earth impurities. Journal of Radioanalytical and nuclear Chemistry, vol.121 N1. P.53-59, 1988. Madan Lai, R.K.Choudhury and R.M.Agrawal Optimisation of geometry for X-ray analysis of rare earth materials. X-ray spectrometry, vol. 16, 23-26 (1987). A.V.Daryin and V.A.Bobrov. 9 A.V.Daryin and V.A.Bobrov. Measurement of rare-earth element in rock standards by XFA method with USE of synchrotron radiation from the storage ring vepp-4. Nuclear instruments and methods in Physics research A261(1987) 292-294 North-Holland, Amsterdam. 10.П.Зузаан, Б.Далхсүрэн, Н.Содном, А.Г.Ревенко Применение полупроводниковых детекторов в рентгенофлуоресцентное анализе. Учен. зап МонГУ, 1982, №12, с.103-117 11.Н.Содном, Б.Далхсүрэн, П.Зузаан и др. Рентгенофлуоресцентный экспресный метод определения содержаний многоэлементных руд. В кн. Вопросы геологии и меторологии Восточной Монголии. УБ 1979, с 33-47 ## МУИС, ЭРДЭМ ШИНЖИЛГЭЭНИЙ БИЧИГ №2(125), 1996 ### AVERAGE (n,a) CROSS SECTION INDUCED BY SLOW NEUTRONS G. Khuukheknuu, I.Chadraabal /Laboratory for Nuclear Research, National University of Mongolia. Ulaanbaatar/ ### ABSTARCT For average (n,α) cross section of slow neutrons were obtained working formulae based on the statistical model. As example, for several target nuclei with A=91-149 were calculated the transmission factors of α particle. ### 1. INTRODUCTION Investigation of charged particle emission reactions induced by slow neutrons ($E_{\alpha} \le IMeV$) is of interest for both the understanding of basic nuclear physics problems and nuclear energy applications. In particular the study of (n,α) cross section is important for research of nuclear reaction mechanisms and α -cluster structure [1], as well as for estemating radiation damage due to helium production in the structural materials of fission and fusion reactors [2]. In addition, some (n,α) cross sections are of importance to nuclear astrophysics calculations [3,4]. Because of this, it would be very useful to obtain the correct expression for (n,α) cross section . Several formulae have been suggested to calculate average (n,γ) , (n,p) and (n,α) cross sections for neutron energy up to several MeV [4]. For average (n,γ) cross section detailed consideration was perfected by Lane and Lynn [5]. However, for specific calculation of average (n,α) cross section it must be taken into account statistical fluctuations of α -widths [6]. Main features of average (n,α) cross section have been obtained in refs. [7,8] In this paper we report on the attempt of more detail consideration for average (n,α) cross section based on the statistical model of nuclear reaction. ## AVERAGE (n,α) CROSS SECTION 1 RESONANCE THEORY For slow neutrons in the energy range ΔE_i , near resonance state i, averaged (n,α) cross section can be written as $$\left\langle \sigma_{n,n}^{\perp}(J,I)\right\rangle = \frac{\int_{M_{n}} \sigma_{n,n}(J,I,E)\Phi(E) \cdot dE}{\int_{M_{n}} \Phi(E) \cdot dE}$$ (1) where J is the compound nucleus total angular momentum, I is the angular momentum of neutrons, E is the neutron energy and $\Phi(E)$ is the neutron flux. If for ΔE_i we assume $\Phi(E){\approx}const$, then using the one-level $\;$ Breit-Wigner formula $$\langle \sigma_{a,a}(J,I) \rangle = \frac{\pi \lambda^2 g(J)}{\Delta E} \sum_{i=1}^{N} \int_{-a}^{e_F} \frac{\Gamma_a(J,I) \cdot \Gamma_a(J,I)}{(E - E_i)^2 + \frac{\Gamma^2}{a}} dE$$ (2) Here λ is the wavelength of the incident neutrons divided by $2\pi,~g(J)$ is the statistical weight factor, ΔE is the energy interval of neutrons, N is the resonance number, $\Gamma_n,~\Gamma\alpha$ and Γ are the neutron, alpha and total widths of i state. Using the formula $$\int \frac{dx}{a^2 + x^2} = \frac{\pi}{a} \tag{3}$$ $$\langle \sigma_{n,a} \rangle = 2\pi^2 \overline{k}^2 \sum_l \sum_J \frac{g(J)}{D(J)} \left\langle \frac{\Gamma_a(J,l) \cdot \Gamma_a(J,l)}{\Gamma(J,l)} \right\rangle$$ (4) Here $\mathrm{D}(J)\!\!=\!\!\Delta E/N$ is the mean spacing of resonances with angular momentum J. # 2.2 STATISTICAL FLUCTUATIONS OF NEUTRON AND ALPHA WIDTHS In order to use formula (4) in practice, it is necessary to calculate the neutron and alpha-widths fluctuation factor, $$L(l) = \frac{\left\langle \frac{\Gamma_n \cdot \Gamma_a}{\Gamma} \right\rangle}{\left\langle \frac{\Gamma_n}{\Gamma} \right\rangle \left\langle \Gamma_a \right\rangle}$$ $$\langle \Gamma \rangle$$ (5) which can be determined as $$L(l) = \frac{\langle \Gamma \rangle}{\langle \Gamma_n \rangle \langle \Gamma_u \rangle} \int_{\sigma_0}^{\sigma_m} \frac{\Gamma'_s \cdot F_s(\Gamma'_s) \cdot d\Gamma'_u \cdot \Gamma_u \cdot F_u(\Gamma_u) \cdot d\Gamma_u}{\langle \Gamma_s + \Gamma_{\gamma} + \Gamma_{\alpha} \rangle}$$ (6) where F_α and F_α are the probability distributions for neutron and alpha widths . In most cases experimental values of Γ_n are satisfied conditions $\Gamma_n{<<}\Gamma_n$ and $\Gamma_{\alpha} << \Gamma_{\gamma}$. Therefore expression (6) becomes $$L(\ell) = \frac{\langle \Gamma \rangle}{\langle \Gamma_a \rangle \cdot \langle \Gamma_o \rangle} \cdot \frac{\int_0^a \Gamma_a^{\ell} F(\Gamma_a^{\ell}) d\Gamma_a^{\ell} \cdot \int_0^a \Gamma_a F_a(\Gamma_a) d\Gamma_a}{\langle \Gamma_a + \Gamma_p \rangle}$$ (7) Last integral gives $$\int_{a}^{a} \Gamma_{\alpha} F_{\alpha}(\Gamma_{\sigma}) d\Gamma_{\alpha} = \langle \Gamma_{\sigma} \rangle$$ (8) Thus, for reduced neutron widths $\Gamma'_n = \Gamma_n / \upsilon_t(E)^{\nu_2}$ (here υ_1 is the penetrability factor for neutrons) using Porter-Thomas distribution [10], we have $$L(\ell) = \frac{\langle \Gamma \rangle}{\langle \Gamma_n \rangle} \int_{0}^{\infty} \frac{\Gamma_n \exp\left[-\frac{\Gamma_n' \cdot \Gamma_n'}{2\langle \Gamma_n' \rangle}\right] d\Gamma_n'}{(\Gamma_n + \Gamma_n) \left[2\pi \cdot \langle \Gamma_n' \rangle \cdot \Gamma_n'\right]^{1/2}}$$ (9) From the expressions (4), (5) and (9) using the formula from ref [11] $$\int_{1}^{\infty} \frac{x^{2} \exp(-x^{2})}{x^{2} + \beta^{2}} dx = \frac{\sqrt{\pi}}{2} \left\{ 1 - \sqrt{\pi} \cdot \beta \exp(\beta^{2}) \left[1 - \Phi(\beta) \right] \right\}$$ (10) $$\left\langle \sigma_{n,\alpha} \right\rangle = 2\pi^2 \overline{\lambda}^2 \sum_{\ell} \sum_{J} \frac{g(J) \left\langle \Gamma_n(J,\ell) \right\rangle}{D(J)} \left\{ 1 - \sqrt{\pi} \beta \exp\left(\beta^2\right) \left[1 - \Phi(\beta) \right] \right\}$$ (11) Here $\Phi(\beta)$ is the error function $$\Phi(\beta) = \frac{2}{\sqrt{\pi}} \int_{\alpha}^{\infty} \exp(-t^2) dt \text{ and } \beta = \frac{\langle \Gamma_r \rangle}{2\langle \Gamma_s' \rangle \cdot \sqrt{E} \cdot \nu_s \cdot \varepsilon(J)}$$ where $\varepsilon(\mathbf{J})$ is the factor of channel spins [12]: In order to calculate the average (n,α) cross section by the expression (11) it is necessary to determine average α -width $\langle \Gamma_{\alpha} \rangle$. According to Blatt and Weisskopf [13] average α -width is given by $$\langle \Gamma_{\alpha} \rangle = \frac{D(J)}{2\pi} \cdot T_{\alpha}$$ (14) Here T_a is the transmission factor which is a sum of the surface reflection and penetrability through Coulomb and centrifugal barriers. In the case of "black-nucleus" approximation may be written [14] $$T_o = \exp \left\{ -2\sqrt{\frac{2\mu}{\hbar^2}} \int_{\pi}^{\alpha} \left[V(r) + \frac{2Ze^2}{r} + \frac{\hbar^2 \ell(\ell+1)}{2\mu r^2} - E_{\alpha} \right]^{1/2} dr \right\};$$ (15) Here μ is the reduced mass of $\alpha\text{-particle},~Z$ is the proton number of daughter-nucleus, e is the charge of electron, l is the angular momentum of $\alpha\text{-particle}$ and $E_{\rm x}$ is the energy of α -particle; $R_{\rm i}$ and $R_{\rm o}$ are the turning points. Nuclear potential V(r) has been obtained by Igo [15] $$V(r) = -1100 \exp\left[\frac{117 \cdot A^{1/3} - r}{0.574}\right]; \text{ MeV},$$ (16) Thus the transmission factor To can be obtained by the expressions (15) and (16). As example, some results of our calculation for several nuclei are shown in Table 1 in the Appendix. Other parameters of the formulae (11) and (12) can be determined from the compilation [16]. ### APPENDIX Table 1. Transmission factor for (n,α) reaction | Target
Nucleus | E _n (MeV) | T_u , 10^{-6} | | | |-------------------|----------------------|-------------------|------|------| | | | 1=0 | 1=1 | 1=2 | | Zr-91 | 5.41 | 0.26 | 0.20 | 0.11 | | Mo-95 | 6.12 | 1.50 | 1.20 | 0.70 | | Te-123 | 7.34 | 0.22 | 0.18 | 0.12 | | Nd-143 | 9.44 | 3.90 | 3.20 | 2.20 | | Sm-147 | 9.84 | 4.40 | 3.70 | 2.50 | | Sm-149 | 9.17 | 0.48 | 0.40 | 0.28 | ### REFERENCES - E.Gadioli, P.E.Hodgson. Pre-Equilibrium Nuclear Reactions. Clarendon Press, Oxford, 1992. - 2. D.C.Larson et al. In book: << Nuclear Data for Science and Technology>> Ed. J.K.Dickens. Gatlinburg, American Nuclear Society, Inc. 1994, p.831-835 - 3. Essays in Nuclear Astrophysics, Eds. C.A.Barnes, D.D.Clayton, - D.N.Schramm. Cambridge University Press. 1982. 4. J.A.Holmes et al. Atomic Data and Nuclear Data Tables, - vol. 18, N4, 1976. p.305-412, vol.22, 1978, p.371-441. 5. A.M. Lane, J.E. Lynn. Proc. Phys. Soc., A, vol.70, part 8, N452A, 1957, p.557-570. - P.507-570. Yu.P.Popov et al. Acta Phys. Pol. vol.B4, N4, 1973, p.275-285. V.A.Vtuyrin et al. JINR communication, P3-10733, 1977, Dubna. Yu.P.Popov, V.I.Salatcky, G.Khuukhenkhuu. Sov. J.Nucl. Phys. vol.32, N4(10), 1980, p.893-901. - vol.32, N4(10), 1980, p.893-901. 9. G.Breit, E.Wigner. Phys. Rev., vol.49, N7, 1936, p.519-531. 10.C.E.Porter, R.C.Thomas, Phys. Rev., vol.104, N2, 1956, p.483-491. 11. I.S.Gradshtein, I.M.Ryjik. Tablicy integralov, summ, ryadov i proizvedenii. Nauka, Mockva. 1971, p.352. 12.W.Hauser, H.Feshbach. Phys. Rev., vol.87, N2, 1952, p.366-373. 13.J.M.Blatt, V.F.Weisskopf. Theoretical Nuclear Physics, John Wiley and Sons, New York. 1952. 14.J.O. Rasmussen, Phys. Rev., vol.113, N6, 1959, p.1593-1598. - and Sons, New York, 1952. 14.J.O.Rasmussen, Phys. Rev., vol.113, N6, 1959, p.1593-1598. 15.G.Igo, Phys. Rev. Lett., vol.1, N2, 1958, p.72-74. 16.S.F.Mughabghab et al. Neutron Cross Sections, vol.1, BNL, Academic Press, New York. 1981 and 1984.