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INTRODUCTION  

The complex scaling method (CSM) [1, 2] has been 
shown to be very useful for studying weak binding 
states strongly coupled with continuum states. 
However, it has been discussed to have difficulty in 
description of broad resonance states and virtual 

states which need a scaling angle near  that is a 

limit due to the analyticity. In this work, we discuss 
that the CSM is very useful tool to study the virtual 
state. There is no previous demonstration (except 
our previous works [3, 4]) that the CSM can be 
applied successfully for investigation of a virtual 
state. Recently, applying the CSM to the  
three-body model for 9Be, we have shown that the 
sharp peak of the photo-disintegration cross section 
experimentally observed just above the 8Be(0+)  
threshold is dominantly explained as a 1/2+ virtual 
state of the 8Be(0+) two-body configuration [3]. 
Furthermore, in the framework of the CSM, the 
structure of a virtual state in a  wave using a simple 
schematic two-body model was discussed [4].  
In the present report, we calculate the virtual state 
energy using the continuum level density and the 
phase shift corresponding to the virtual state. In our 
previous work [4], we concluded that the virtual 
state has a strong influence on the scattering 
observables when it approaches the zero energy near 
the physical scattering region. 

COMPLEX SCALING METHOD 

In the CSM, the relative coordinate  is rotated as 
 in the complex coordinate plane [5]. The 

complex-scaled Hamiltonian   and wave function 
 are defined as  and , 
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respectively, and see Ref. [1, 2] for details. The 
Schrodinger equation can be written as 

,       (1) 

where   is the spin and parity,  is the state index, 
and   is a scaling angle being a real number.  

Applying the  basis function method, the radial 
wave function is expanded as  

,      (2) 

where  is an appropriate basis function set. 

The expansion coefficients  and the complex 
energy eigenvalues  are obtained by solving the 
complex-eigenvalue problem given in Eq. (1). The 
complex energies of resonant states are obtained 
as , when

. The Hamiltonian is given as 

.       (3) 

For simplicity, we put  (MeV fm2). Where 

we assume the simple schematic two-body potential 

,       (4) 

where  fm-2. This potential was introduced 
in Ref. [6].  

RESULTS 

In our previous work [3,4] we confirmed that the 
virtual state is responsible for the enhancement of 
the photo-disintegration cross section near threshold 
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in -waves and when the virtual state approaches to 
the zero energy near the physical scattering region, 
it has a strong influence on the scattering 
observables. In the present work, we analyze the 
continuum level density and the phase shifts 
applying a simple schematic two-body model 
simulating the 8Be  system.  

 
Figure 1. The energy level diagram of the two-body potential 
model simulating 9Be. The dotted line represents the threshold 
energy. 

In Fig. 1, we show the energy level diagram of the 
two-body potential model simulating 8Be . The 

 and  states are obtained by solving the 
complex-scaled Schrodinger equation. The potential 
strength  in Eq. (4) is taken to reproduce one 
bound  of  waves. But this   
solution is assumed to be the Pauli forbidden state, 
because in this model we simulate the 8Be  
system which has the Pauli-forbidden  neutron 
configuration. Therefore, the  solution describes 
the ground state. 
In the CSM, the virtual state cannot be obtained as 
an isolated solution, but the continuum solutions are 
considered to include the effect of the virtual state. 
In order to see the resonance effect on the phase shift 
clearly, we calculate the phase shift subtracting the 
resonance term from  as 

.  

 (5) 

The Eq. (5) can be applied to calculate a virtual state 
contribution to phase shifts if there is a single pole 
obtained like a resonant pole on the first Riemann 
sheet. But the virtual states cannot be obtained as the 
isolated pole in the CSM because those are located 
on the second Riemann sheet covered by the rotated 
first Riemann sheet as we discussed in the our 
previous work [3]. Therefore, it is obvious that in 
the present work, segregated single pole from 
continuum states for virtual state cannot be obtained 

in the energy eigenvalue distribution. However, it is 
possible to get the information of the virtual state 
pole in terms of the continuum solutions in the 
CSM.  
As can be seen from Fig.6 in Ref. [4], an additional 
bound state appears suddenly at  MeV 
which can be explained following Levinson theorem 

,      (6) 

where  is the number of bound states. If the 
attraction of the potential strength is slightly 
increased, the virtual state becomes bound state. 
When a bound state of -wave solutions changes to 
a virtual pole, we call a critical point  of the 
coupling constant (potential strength). The 
continuum level densities  and , can 
be calculated for  and . An 
additional bound state appears in the former, but a 
virtual state pole is expected to appear in the latter. 
The continuum level density  and  
are  

 
and  
   ,      (7) 

where  is the continuum level density of the 
bound state solution. The continuum level density 

 and  are calculated using the continuum 
solutions for  and , respectively. 
Assuming that the continuum level density  
and  are smooth functions for the coupling 
constant, we can extract the continuum level density 
contribution from the virtual state by taking a 
difference between  and , 

.        (8) 

The continuum level densities  and  
are calculated for  MeV and  
MeV. The difference between  and , 
corresponding to  is given in Fig. 8 of Ref. 

[4]. From the continuum level density , we 
obtained the phase shift  of the virtual state 
which is shown in Fig. 9 of Ref. [4]. 
Analyzing of the phase shift  suggests a 
logarithmic function of  and also the continuum 
level density  looks like a behavior of

. Assuming , we 
can extract the energy  which corresponds to 
the virtual pole position on the second Riemann 
sheet. At energies , we have the following relation 
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using  at , where  is an 
energy step: 

,       (9) 

where  is the virtual pole energy obtained by 

using  at . Solving 
Eq. (9), we obtain 

.     (10) 

From the continuum level density  shown in 
Fig. 8 of Ref. [4] and taking  and , 
we can calculate  and show the results in Table 
1. 
The present results of virtual state  is 
comparable with the result obtained by Jost function 
method [7]. The Jost function method can be easily 
applied to the present two-body model and we 
obtained a solution of the virtual state at 

 MeV. 

Table 1. The virtual pole energy  calculated from the 
continuum level density . 

 

Comparing the results calculated both method, the 
present result calculated by the CSM can be 

considered reasonable because in the CSM complex 
eigenvalue problems have to be solved with the 
basis expansion method. Therefore, to keep a 
numerical accuracy with high digits is difficult for 
the CSM. 

SUMMARY 

We employed the simple schematic two-body model 
and the CSM for investigation of the virtual state. 
The virtual state energy calculated using the 
continuum level density and the phase shift of the 
virtual state. The calculated results of the virtual 
state solutions in the CSM and the Jost function 
methods are comparable. 
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