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We study the profiles of the flux tube between a static quark and an antiquark in quenched 
SU(2) lattice gauge theory at temperatures around the deconfinement phase transition. The 
physical width of the flux tube and the string tension have been determined from the 
transverse profiles and the  potential, respectively. Exploiting the computational power of 
a GPU accelerator in our flux tube investigation, we achieve a much higher statistics through 
which we can increase the signal to noise ratio of our observables in the simulation. This has 
allowed to investigate larger lattices as well as larger separations between the quarks than in 
our previous work. The improved accuracy gives us better results for the width and the string 
tension. The physical width of the flux tube is increasing with the temperature up to around 

 while keeping its increasing dependence on the separation. The string tension results 
have been compared for two different sizes of the lattice. As the lattice becomes larger and 
finer together with the precision improved, the temperature dependent string tension tends 
to have smaller value than the previous one. 

   PACS numbers: 11.15.Ha, 12.38.Gc 

 

I. INTRODUCTION  

The study of properties of matter at high 
temperatures is a challenging topic in experimental 
as well as theoretical high energy physics since 
these are relevant for heavy ion collision 
experiments and for cosmology. The fundamental 
theory of matter which governs the physics at such 
extreme conditions is Quantum Chromodynamics 
(QCD), the theory of strongly interacting quarks and 
gluons. While quarks carry a color charge, all 
physically observed states so far are color singlets. 
All attempts to separate a quark from hadrons i.e. 
from bound quark states have failed. This is called 
quark confinement whose mechanism still has not 
yet been explained completely. 
Quarks are sources of chromoelectric flux. It is 
generally believed that due to the non-abelian nature 
of the gauge interactions in QCD the flux between 
quarks inside a meson is squeezed into narrow tubes 
connecting the quarks. For an infinitely narrow flux, 
a string, confinement would manifest itself in an 
attractive, linearly rising potential between a static 
quark and antiquark pair. Thus the detailed 
investigation of the flux tube can give us more 
information on the confinement problem.  
Already quite early, Hagedorn conjectured the 
break-down of ordinary hadron physics at some 
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temperature. Due to asymptotic freedom of QCD [1, 
2] it was also predicted that QCD at infinite 
temperature is a theory of asymptotically free and 
thus deconfined quarks and gluons. Indeed, most of 
the first numerical simulations of lattice regularized 
QCD at finite temperature indicated a transition 
from confined to deconfined quarks [3, 4], at a 
temperature which fairly recently has been 
determined as about 154 MeV [5, 6] in lattice 
simulations at the physical quark masses. The 
analysis of the flux tube between static quarks at 
high temperature, its energy per unit length and its 
width, is thus an interesting exploration ground to 
investigate confinement and the loss thereof. 
The pure glue approximation of QCD, i.e. a SU(3) 
Yang-Mills theory, has been shown to develop a 
first order confinement-deconfinement transition at 
a critical temperature . Correspondingly, the order 
parameter of this transition drops to 0 at . In an 
SU(2) Yang-Mills theory, however, the transition is 
continuous. In full QCD, with dynamical quarks, the 
transition is a mere crossover at physical quark 
masses. Yet, it could be in the scaling region of a 
second order phase transition in the chiral limit. In 
any case, it is clear that also above quarks and 
gluons will exhibit strong interactions. Thus, even at 
temperatures above it is interesting to study the 
changes of the flux tube with temperature to obtain 
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hints about QCD forces in this experimentally very 
important regime. 
We study how the flux tube behaves when QCD 
undergoes the deconfining phase transition. To do 
so, we measure chromoelectric and 
chromomagnetic components of the field strength, 
stored in the flux tube, from Polyakov loop - 
plaquette correlations at various temperatures. From 
longitudinal and transverse profiles of the 
distribution of those components one can 
quantitatively analyze the temperature dependence 
of the physical width of the flux tube. The color 
averaged potential between a heavy quark and an 
antiquark at finite temperature allows us to 
determine the temperature dependent string tension 
values. 
Such non-perturbative phenomena as quark 
confinement have successfully been studied using 
numerical simulations of lattice QCD. Formation 
and structure of the flux tube in SU(2) pure gauge 
theory have clearly been observed on the lattices and 
its chromo field distributions have extensively been 
investigated as a function of interquark distance and 
lattice volumes [7-10]. Based on the 
superconductivity picture, they confirm that in the 
confining phase the width of the flux tube is a 
physical quantity which is independent of the 
interquark distance. According to another 
conjecture [11-14], which is the string picture of 
confinement, it is assumed that in the confining 
phase the mean squared width of the flux tube 
should grow logarithmically as a function of 
interquark distance. Moreover, at finite temperature, 
close to the critical temperature, but still in the 
confining regime, it has been predicted in [15, 16] 
that the widening of the flux tube becomes linearly, 
not logarithmically dependent on the interquark 
distance. These authors have also show that the 
slope of the curve of this linear growth is an 
increasing function of the temperature. A recent 
calculation also by [17] showed that the intrinsic 
width of the flux tube diverges as the deconfinement 
transition is approached. In our previous work [18] 
we have concluded that the mean squared width of 
the energy density, , gradually decreases with 
increasing temperature. Further we were concluding 
that the decrease of width and height of the 
transverse profiles at the same time shows gradual 
disappearance of the flux tube at and above . A 
recent lattice Monte Carlo simulation of SU(3) pure 
gauge theory by [19] finds that as the temperature is 
increased towards and above the deconfinement 

temperature, the field strength value inside the flux 
tube gets smaller, while the shape of it does not vary 
appreciably across deconfinement. [19] presented 
also some evidence about the existence of flux-tube 
structures in the magnetic sector of the theory in the 
deconfined phase. A more recent study by [20] 
claims evidence for the non-existence of flux tubes 
at temperatures above the deconfinement 
temperature. Therefore, in summary, one needs to 
check these things together with the temperature 
dependent string tension carefully to ascertain the 
flux tube fate below as well as above the critical 
temperature.  
Thus, in this paper, we extend and improve our 
previous results [18] by moving to larger lattices as 
well as by increasing our statistics considerably. In 
order to study the geometry of the color flux tube 
closer to the continuum physics, we also increase 
both in resolution of the underlying lattice and in the 
linear extent of the string, which means working 
with very large lattices. 
Increasing the statistics is of great significance. The 
euclidean expectation values of Wilson loops and 
their products are the most natural quantities in non-
abelian gauge theories that encode much of the 
physical information about the strength of the force 
between static color sources. However, expectation 
values of large Wilson loops and loop correlation 
functions are difficult to compute through numerical 
simulation, because the signal-to-noise ratio is very 
rapidly decreasing with growing loop sizes. These 
observables, can, however, only be extracted 
reliably if one is able to calculate the relevant 
expectation values accurately over a significant 
range of loop sizes and distances. Thus, one has to 
increase the statistics or use better computational 
strategies [21]. 
Here we speed-up the generation of the gauge field 
configurations by executing the simulation program 
on a GPU accelerator. The acceleration of the 
simulation enabled us to reach twice as larger 
separation with higher accuracy than we had before 
and it gives us better results on the width and string 
tension values of the confining flux tube through 
much larger statistics. 
The paper is organized as follows. In Section 2, we 
give the lattice definition of the observables to be 
measured, the visualization of the flux tube 
geometry and the details of the simulation program 
with the parameter values at which the simulations 
have been performed are summarized. We present 
our results in Section 3, which has the four 
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subsections. In the first subsection we displayed the 
results from the lattice with . Here the 
longitudinal and transverse profiles of the 
chromoelectric component of the field strength in 
the flux tube have been plotted at some given values 
of and . Transverse size effect has also been 
checked here for the lattices of sizes 

and . Then we shifted to a larger and 
finer lattice with  in the second subsection 
and the same observables have been plotted from 
this lattice at some given values of  and . In 
the third subsection, we calculate the half width 
squared of the flux tube as functions of interquark 
distance and temperature from both lattices with 

and  and compare them with our 
previous results and with some recent results by 
other people. In the final subsection, the temperature 
dependent string tensions have been computed and 
compared with the leading behavior. Finally we 
conclude in Section 4. 

II. LATTICE SET-UP 

Chromoelectric and chromomagnetic components 
of the field strength in the flux tube can be extracted 
from Polyakov loop-plaquette correlations [22, 23] 

 

where  is the lattice spacing and  is the coupling 
constant.  
The time propagation of the two static quarks sitting 
at the distance  from each other is represented by 
the Polyakov loop  and its conjugate  at 
distance , where 

 

is the mathematical expression of the Polyakov loop 
located at some spatial site . The plaquette variable 

 at distance  from the line connecting the 

pair, with the orientation  

 

measures the field strength  in the flux tube when 
correlated to the Polyakov loop pair. Here  is 
the product of four link variables around the 
boundary of the plaquette and  is the number of 
colors. 
In the following we have chosen our coordinate 
system such that the quark and the antiquark are 
separated along the "1" direction. The subscript  

denotes the component that is oriented parallel to the 
axis connecting the two sources, while  denotes 
the two components that are perpendicular to this 
axis. A sketch of the chosen flux tube geometry and 
the orientations of the six chromoelectric and 
chromomagnetic components is shown in Figure 1. 

 
 

Figure 1. Sketch of the flux tube geometry. 

The six different combinations of  and define the 
six chromoelectric and chromomagnetic 
components of the field strength [24]. Three space-
space plaquettes correspond to the magnetic 
components 

 

and three space-time plaquettes correspond to the 
electric components 

 

One can then scan the profile of the flux tube by 
varying the position of the plaquette. Our 
simulation program measures these six 
chromoelectric and chromomagnetic components 
by computing the correlations given by Equation 1. 
In our program, pure gauge theory with gauge group 
SU(2) with the standard Wilson action has been 
simulated on lattices of size namely 

and . 
Here due to our interest to have as large as 

possible  separations along the  direction. 
The update algorithm is one heatbath [25-27] and 
four overrelaxation steps [28, 29]. For noise 
reduction we use the link integration method [30] 
and the reference point technique [31]. We have 
implemented the updates on a single Nvidia GPU 
accelerator, following the CUDA programming 
model for quenched SU(2) gauge theory of [32]. We 
have further implemented CUDA codes for the 
Polyakov loop-plaquette correlation that measures 
the flux tube [33]. 
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The lattice regularization has a temporary role only. 
At the end, one has to convert the lattice results to 
physical units using the so-called scaling relation. 
For the determination of our scaling function we 
used the scaling relation based on the SU(2) zero 
temperature string tension results given by [34]. We 
prefer to give dimensionful quantities in units of , 
for the reason that the value of the SU(2) string 
tension in MeV is unknown. 
The separation range at which the simulations 
have been performed is  fm for the lattice 
of size , fm for the lattice 
of size  and  fm for the 
lattice of size . Exploiting the 
computational power of a GPU accelerator, we were 
able to increase the number of our measurements 
to  for the first two lattices and  for 
the third one. measurements have been used 
for the thermalization of the gauge configurations. 
Our simulation parameters and their values are 
summarized in Table 1. 

Table 1. The values of the simulation parameters. 
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III. RESULTS 

A. Flux tube profiles from the lattice 
with  

Longitudinal profiles at  of the parallel 
electric component  are displayed on 

the left column of Figure 2 at the given values of 
separation . Their corresponding transverse 
profiles at are displayed on the right 
column of the figure at the same values of 
separation. The results have been plotted in units of 
the string tension. 
Here we confirm with higher accuracy that at any 

 separation  [23] also at 
high temperature. Thus the force that tries to bind 

the and  together is larger than the other forces in 
other directions. This holds for both longitudinal 
and transverse profiles. Since we have seen that the 
general  and  dependence is the same for all 
components, for convenience we have chosen to 
show only the parallel electric component, which is 
the largest one, in the following figures. 
On the plots of the longitudinal profiles in Figure 2, 
one quark source is placed at  and another 

one is at distance from it. A longitudinal profile 
shows the general behavior that the field strength 
value has the peaks at the locations of  and  and 
decreases as the point at which the field strength is 
computed goes away from the sources. From Figure 
2 one can also see that the field strength value at the 
middle point between the two sources decreases 
with rising temperature and the distribution 
approaches the one of two isolated quarks as the 
temperature goes to . This is in agreement with the 
expectation that the flux tube exists only in the 
region below . Increasing the separation 
accelerates this flux tube disappearing process with 
temperature. 
Before we move to a smaller lattice spacing, we 
wanted to check that if there is an effect from 
transverse size of the lattice. To do so we have 
repeated our simulation on the lattice of size

  increasing only the transverse size of the 
lattice. Comparison of the results obtained from the 
two lattices differing with is shown in Figure 3 
for various  at . One can say from Figure 3 
that for the given  and , there are real differences 
between the values obtained at  and  
because our data has significantly small error bars 
which do not overlap. The field strength value at 
larger  is going to be greater than that at 
smaller . The difference seems to grow when  
decreases as it is clearly visible from the data at 

 and . The transverse size effect becomes 
negligible when   approaches its critical value, 

 in this figure. 

B. Flux tube profiles from the lattice with 
 

In the previous subsection we presented the results 
from  lattice. After checking the 
transverse size effect we have chosen the next lattice 
size to be . We have seen that the 
transverse size effect seems to appear to be strong in 
the confining phase well far from the critical 
coupling. 
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Figure 2. Left: Longitudinal profiles . Right: their transverse profiles  at 

 from the lattice of size . 

And our region of interest is the close vicinity to the 
critical coupling where the effect is small but not 
negligible. Regarding all of this we changed  
from 12 to 16. Longitudinal and transverse profiles 

of the parallel chromoelectric component of the field 
strength in the flux tube obtained from the lattice of 
size at a given values of  and 

are displayed in Figure 4. 
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Figure 3. Checking transverse size effect by comparing the 
results obtained from two lattices differing only with . 

Note that the same color is used to denote the data 
that have been obtained at the same temperature 
value in all plots of Figure 4. The reason that, for a 
given value of (in other words, from left to 
right direction), there are fewer data curves in a 
transverse plot than in a longitudinal one is that 
because we have to collect only those transverse 
profile data obtained at an even number of , so 
that the transverse profiles can be at the middle 
plane between  and . 
To summarize this chapter, in this work we were 
able to reach twice as larger separations with  
times smaller error bars than in our previous work. 
While the new results show the same temperature 
and distance dependence of the field strength or 
height of the flux tube like was in [18], the higher 
accuracy results from larger lattices redetermine the 
numerical value of the field strength. This leads us 
to redo the fits to determine the width and string 
tension of the flux tube. 

C. Width of the flux tube 
We call the width of the energy density the physical 
width of the flux tube. In principle, the width will be 
different at each  point along the axis connecting 

 and . However, we prefer to choose the one at the 
middle transverse plane at . The data on 
the middle transverse plane allow for fits to estimate 
the half width squared of the flux tube. 
The half width squared, , can be quantitatively 
determined from the transverse profiles displayed in 
the right columns of Figure 2 and Figure 4 by fitting 
the data curves to appropriate fit functions. For 
small separation of the sources, perturbation theory 
is likely to apply and one might thus expect the 
distributions to follow the shape of the dipole field 

 

and as the source separation becomes large, 
compared to the transverse size of the flux tube, the 
string picture comes into play and one might expect 
gaussian distributions like 

 

The upper index  denotes fitting to energy density. 
The energy density is given by  

since we have seen from [23] that 

 at the given values 

of  and . We calculate the width of the energy 
density for each  and . So we fit the average of 
the three approximately equal components, namely 

 and   for each  and . It 

turned out that the distribution of  is 

closely described by the coulombic fit function. And 
since we fit  for two regions of small and 

large separations, the functional form for  

could be coulombic [8, 35] 

 

 

for small separation  and gaussian 
[8] 

 

 

for large separations . 
The physical width of the flux tube is defined as [12, 
35] 

 

in terms of the fit parameters. After calculating the 
integrals it is given by 

 
and 

 

The fit results from the lattices of size 
 and  together with their derived 

have been displayed in Table 2 and Table 3 
respectively. 
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Figure 4. Left: Longitudinal profiles . Right: their transverse profiles  at 

 from the lattice of size . 

Because of the parameterization dependence of the 
width for the two parameterizations, the widths 
calculated by Equation 11 and Equation 12 have to 

be multiplied by for coulombic 

and by for Gaussian distribution to 
connect between the two regimes [8]. 
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Table 2. Results for the fit parameters and  from the lattice of size . 

  Fit 
function 

     2
 

 
 
4 

2.35 Equation 8 7.38(50) 12.56(33) 0.212(18) 2.87(9) 2.87(9) 1.5 
2.39 Equation 8 10.66(89) 16.70(54) 0.105(10) 2.58(8) 2.58(8) 4.3 
2.43 Equation 8 17.29(2.48) 24.49(1.37) 0.068(10) 2.62(13) 2.62(13) 18.5 
2.47 Equation 8 7.71(1.39) 23.42(1.65) 0.040(6) 2.52(12) 2.52(12) 27.2 
2.51 Equation 8 2.41(42) 18.68(1.30) 0.026(3) 2.35(8) 2.35(8) 18.5 

 
 
6 

2.35 Equation 9 31.21(2.34) 21.92(91) 0.00332(21) 0.473(36) 2.11(16) 0.2 
2.39 Equation 8 54.02(7.38) 32.47(1.69) 0.678(191) 7.24(74) 7.24(74) 1.7 
2.43 Equation 8 97.69(17.85) 52.73(3.62) 0.695(189) 9.17(91) 9.17(91) 4.8 
2.47 Equation 8 26.32(4.62) 45.59(3.04) 0.211(47) 7.57(61) 7.57(61) 4.3 
2.51 Equation 8 5.27(1.53) 34.11(3.79) 0.161(38) 7.58(65) 7.58(65) 6.0 

 
 
8 

2.35 Equation 9 43.57(8.07) 27.77(1.95) 0.00173(14) 0.207(28) 4.83(65) 0.1 
2.39 Equation 9 135.17(17.38) 49.06(2.36) 0.00076(5) 0.146(14) 6.85(66) 0.2 
2.43 Equation 9 239.06(43.05) 81.19(5.35) 0.00032(2) 0.103(10) 9.71(94) 0.9 
2.47 Equation 8 89.70(19.41) 83.34(6.60) 1.25(32) 19.13(1.82) 19.13(1.82) 1.1 
2.51 Equation 8 4.71(1.15) 43.03(3.92) 1.18(23) 21.67(1.60) 21.67(1.60) 0.6 

 
Table 3. Results for the fit parameters and  from the lattice of size . 

  Fit 
function 

     2
 

 
 
4 

2.435 Equation 8 3.21(28) 12.03(40) 0.0842(69) 2.49(7) 2.49(7) 0.5 
2.475 Equation 8 2.44(36) 13.59(76) 0.0875(84) 2.77(9) 2.77(9) 1.4 
2.515 Equation 8 5.83(1.03) 21.87(1.51) 0.0491(57) 2.56(10) 2.56(10) 3.2 
2.560 Equation 8 1.63(20) 16.53(77) 0.0204(15) 2.17(5) 2.17(5) 1.6 
2.600 Equation 8 0.82(17) 15.26(1.24) 0.0202(18) 2.27(7) 2.27(7) 3.4 

 
 
6 

2.435 Equation 8 8.83(95) 18.10(75) 0.156(36) 4.39(37) 4.39(37) 0.1 
2.475 Equation 8 9.89(2.06) 23.67(1.87) 2.170(730) 13.41(1.68) 13.41(1.68) 0.6 
2.515 Equation 8 12.54(1.16) 33.88(1.20) 0.301(44) 8.37(45) 8.37(45) 0.2 
2.560 Equation 8 9.27(75) 38.63(1.22) 0.059(7) 5.52(22) 5.52(22) 0.2 
2.600 Equation 8 0.41(18) 17.54(2.96) 0.268(63) 9.86(86) 9.86(86) 1.2 

 
 
8 

2.435 Equation 9 0.572(464) 7.97(2.40) 0.00087(24) 0.200(93) 4.33(71) 0.4 
2.475 Equation 8 42.08(12.54) 44.93(5.07) 156.14(70.66) 67.95(11.51) 67.95(11.51) 0.2 
2.515 Equation 8 78.68(12.32) 73.18(4.34) 0.39(13) 12.31(1.52) 12.31(1.52) 0.2 
2.560 Equation 8 20.69(3.48) 62.84(4.02) 0.23(7) 12.86(1.35) 12.86(1.35) 0.2 
2.600 Equation 8 0.052(29) 11.33(2.36) 6.27(1.37) 40.13(3.35) 40.13(3.35) 0.3 

The resulting widths  from the lattices with 
 and  are plotted in Figure 5 as a function of 

temperature at several values of lattice  
separations.  As the fit did not work well for R larger 
than 8a giving too noisy results we did not include 

them in Figure 5. The width value is given in units 
of the string tension. Figure 5 shows that at a given 
value of separation, the width of the flux tube is 
increasing with the temperature up to around  and 
above it starts to fall again.

  
 
Figure 5. The width of the flux tube as a function of temperature from the lattices of size   and .
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If one looks at the R-dependence of the width at 
temperature, which is plotted in Figure 6, the width 
broadens when R becomes large. This is in 
agreement with what is expected from the effective 
string model prediction about the width as a function 

of interquark distance  [12]. Figure 6 also 
confirms the prediction in [15, 16] which stated that 
the slope of the curve of the linear growth of the 
width is an increasing function of the temperature.  
   

  
Figure 6. The width of the flux tube as a function of separation from the lattices of size  and . 

D. Temperature dependent string tension 
The decrease of the field strength value on the 
middle point between the two sources with 
temperature that was shown by Figure 2 and Figure 
4 and also the decrease of the width value with 
temperature above shown by Figure 5 indicate 
the gradual disappearance of the flux tube  
with . We thus inspect here the temperature 
dependence of the heavy quark potential. For this 
purpose, the color averaged potential data between 
the two sources that has been computed from 

 

is fitted to three types of potentials which are [36] 

 

 

 

 with a temperature independent string tension. 
Alternatively, by using two slightly different 
ans tze both allowing for a temperature dependent 
string tension , 

 

and 

 

with three free parameters. The later one of these 
includes a  piece which accounts for a Coulomb 
type behaviour for small distances.  features 
instead a logarithmic behaviour. Both of them 
include the linear rising part in the potential. These 
two fits both work well as the data show either a 
Coulomb or a logarithmic behaviour as well as the 
linearly rising feature. The results for the free 
parameters are listed in Table 4, Table 5 and Table 
6 respectively. 
The potential fits have been done on the lattices with 

 and . The results for were 
previously presented at [37], but the values of the 
string tension and the other fit parameters have 
changed slightly because we have included here the 
data for small separations , and  at each 

 and added a whole new data set for . 
Thus now for all fits the minimum distance is 

 in lattice units. This data addition does affect to 
the overall fitting procedure that gave the current 
results. 
The resulting string tension values in Table 6 
normalized to their zero temperature values are 
shown in Figure 7, where the leading behavior 

in the linear rising part of Equation 
14 has been plotted for comparison. The data titled 
'previous' is our previous result that was obtained 
from a lattice of size . From all three 
data in Figure 7 we see clearly a decreasing string 
tension with rising temperature. 
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Table 4. Results for the string tension in the flux tube from fit of the potential to Equation 14. 

     2
 

 
 
6 

2.35 0.75 0.857(6) 0.103(1) 58.85 
2.39 0.86 0.891(9) 0.063(1) 699.44 
2.43 0.98 0.854(4) 0.0359(4) 504.69 
2.47 1.13 0.758(1) 0.0275(1) 340.13 
2.51 1.29 0.694(3) 0.0260(3) 3386.95 

 
 
8 

2.435 0.75 0.985(5) 0.089(1) 36.33 
2.475 0.86 1.006(7) 0.059(1) 220.21 
2.515 0.98 0.981(3) 0.0368(5) 117.66 
2.560 1.13 0.9018(9) 0.0276(1) 22.57 
2.600 1.29 0.847(2) 0.0258(3) 359.13 

Table 5. Results for the string tension in the flux tube from fit of the potential to Equation 15. 

          2
 

 
 

6 

2.35 0.75 0.857(6) 0.039(2) 1.43(9) 5.83 
2.39 0.86 0.866(4) 0.005(2) 1.45(8) 51.27 
2.43 0.98 0.7936(8) -0.0053(4) 0.80(2) 16.42 
2.47 1.13 0.6883(2) -0.0027(1) 0.267(7) 8.28 
2.51 1.29 0.6251(3) -0.0014(1) 0.117(7) 25.20 

 
 

8 

2.435 0.75 0.967(2) 0.0337(8) 1.23(3) 0.47 
2.475 0.86 0.9786(3) 0.0043(1) 1.296(5) 0.07 
2.515 0.98 0.9270(7) -0.0060(4) 0.829(17) 2.17 
2.560 1.13 0.8331(7) -0.0046(4) 0.373(19) 8.68 
2.600 1.29 0.7755(6) -0.0033(3) 0.225(15) 13.88 

Table 6. Results for the string tension in the flux tube from fit of the potential to Equation 16. 

          2
 

 
 

6 

2.35 0.75 1.023(23) 0.059(2) 0.69(6) 10.91 
2.39 0.86 1.063(23) 0.022(1) 0.78(7) 117.68 
2.43 0.98 0.916(8) 0.0031(5) 0.47(3) 82.92 
2.47 1.13 0.7312(7) -0.00011(4) 0.165(3) 2.98 
2.51 1.29 0.6446(5) -0.00034(3) 0.075(2) 4.51 

 
 

8 

2.435 0.75 1.113(4) 0.0498(3) 0.61(1) 0.29 
2.475 0.86 1.147(9) 0.0201(6) 0.68(2) 6.53 
2.515 0.98 1.042(2) 0.0035(1) 0.457(7) 1.48 
2.560 1.13 0.8871(8) -0.00049(5) 0.212(2) 0.56 
2.600 1.29 0.8087(12) -0.00084(8) 0.130(4) 2.76 

The deviation between data and the 
leading behavior  reflects the 
thermal corrections of the temperature-dependent 
terms to the zero temperature string tension. When 
precision is improved, i.e. the lattice spacing is 
decreased  the string tension value becomes 
smaller compared to its previous value. 

IV. CONCLUSION 

We have investigated longitudinal and transverse 
profiles of the chromoelectric and chromomagnetic 
components of the field strength in the flux tube at 
temperatures around the deconfinement phase 
transition using Polyakov loop-plaquette 
correlations in the lattice gauge theory. 
Monte Carlo numerical simulations have been 
performed in SU(2) pure gauge theory at 
temperatures  separating a quark 

and an antiquark by distances . We 
were able to follow a clear signal for the flux tube 
over almost twice a larger distance than in our 
previous work. This was due to our implementation 
of a CUDA programming code for our flux tube 
simulation on a GPU accelerator. As a result we 
reached much higher statistics at the same time. This 
higher statistics allowed us to redetermine the 
numerical values of the following observables with 
higher accuracy. 
Results on longitudinal profiles from two different 
lattices show that the field strength value at the 
middle point between the two sources or the height 
of the flux tube clearly decreases with rising 
temperature. The distribution approaches the one of 
two isolated quarks as the temperature goes to . 
This is in agreement with what we expect that the 
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flux tube is expected to exist only in the confined 
phase. 

 
Figure 7. The string tension as obtained from fits with Equation 
16, normalized to its zero temperature value. 

By doing fits to the transverse profiles we have 
determined the physical width of the flux tube as a 
function of temperature. The physical width of the 
flux tube measured from lattices of two different 
lattice spacings both increases with temperature 
until , which looks rather different from previous 
work that showed a gradual decrease instead. The 
current results with higher accuracy confirm the 
prediction in [15, 16] which stated that the slope of 
the curve of the linear growth of the width with 
separation is an increasing function of the 
temperature. Thus one has to conclude that the 
height and width of the flux tube do not decrease at 
the same time with temperature below  but they 
do above . 
We also tried to determine temperature dependent 
string tension values from the potential between the 
two sources by doing three types of fit to the 
potential data obtained at two different lattice 
spacings. All the string tension results clearly 
decrease with rising temperature. Our string tension 
results have been compared with the previous results 
that were obtained from the lattice of size 

 as well as with the lowest-order 
temperature effect on the linear part of the potential.  
As the lattice becomes larger and finer, at the 
improved precision, the temperature dependent 
string tension tends to attain smaller values than on 
the smaller and coarser lattice. 
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