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Asymptotic Solutions for the
- Two-Centre Coulomb Continuum
Problem.

A h. Tsookhuu, J. Madsen, O. Chuluunbaatar and N. Tsogbadrakh

I Introduction

"he understanding and modeling of electrons moving in the fields of two' .
ixed charges plays an important role in electron-molecule. siow meson-atom
:ollisions and more generally in defiection experiments.

The Harriltonian of the Coulomb two-centre problem separates in pro ate
ipheroidal coordinates. [1,2]. A number of numerical methods for solving
hese equations both of discrete and continuum spectrum were developed.
Jowever, the solutions in spheroidal coordinates no contain any information
tbout the momentum of the scattered electron. So, if'we want to obtaina = |
louble differential cross sections for slow M~ + A collisions. it is impossible
o utilize tliese solutions to describe the electron in the finai channel.

On the other hand, the three-body Coulomb problem with all three par-
icles in the continuum has been studied extensively and in resent years some
srogress has been made. Using momentum dependent_effective charges ap-
sroximate solutions have been constructed by Tergiman (3! and Greenland
ot al [4] while Komarov el al [5] used an asymptotic Coulomb phase factor to
lescribe the interaction -between the particles. and Brauner Briggs and Klar
BBK) [6] represented this interaction by confluent hypergeoinetric functions.

All of these solutions were constructed gn the assumption that the distances
»etween any two particles tends to infinity long after the collision.
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It was recently shown by Alt and Mukhamedzhanov (7] that in the caf
where all tkree distances tends to infinity while the ration between an
" two distances vanishes, the-solutions by [3,4,6] fails to approacly the corret
§ e asymptotic fofm. Describing the relative motion of the two closer particle
e : by a momenzum which depends on the position of the third particle. Alt an

' Mukhamedzhanov (7] obtained an asymptotically correct solutiou.

The wave function for an ¢lectron in the field of two fixed charges might a
first be expected to correspond to the solution by Alt and Mukhamedzhano
[7] in" the liniit of vanishing relative momentum between the two closer par
ticles. This is however not the case since this momentum always depends or
the position of the third particle. !

It is the aim of this paper to study the wave function (or a particle &

the fized two-centre field since this solutnon is not included in the state
mentnoned a.bOVe :

-

2 The wave function for an electron in the
field of two ﬁxed charges

—\*‘»\ ' ' ©We consu:ler a system of an incoming electron on two scattering centres
Y\ The vector pointing from centre 1 to centre 2 is R. The vector pointing
¢ 3 from. centre : to the electron is written ry, while the vecter pointing fron

-the.geometrical centre between the two centres to the electron is r. The

‘momentum of the electron, that is the conjugated coordinate of r, is writteu

"as k.

% The relation between r,r; and r, are given by

n=R/24r ro=r—-R/2 e (1]
-_-- ~ It'is from eq. 1 readily seen that v ='Vn‘?-f V2 The Hamiltonian of the
T problem is given by |

H= _‘\‘2 —& =

j ' 1 |
s : =—~2V2 —oV2 v“v,, -=-= ' (2)



Suppose the wave function can be written as a product wave function
VE(r) = ¥ir)d(ry), where ¢(r;) = exp(ikri/2)Q.(r:). In this case the
Schrédinger equation for 2 is written as follows: -

I Q2{3AQ1 +kVQ, + Q. } +
Qu{3AQ2 +ikVQy + 2Q1} + (VQi)N(VQ2) = 0 (3)

. _where the erergy of the electron is given by E = %kz.

2.1 The BBK'Approximation

The Brauner, Brigss and Klar (BB ) approximation consists of neglecting
the term (VQI)(VQQ) from eq. 3. This enables us to separate the r a.nd ra
dependence and eq. 3 reduces to

; }'Aéi +:kVQ; + 'Z";Q- =0 - _ (45

for : = 1.2. This equation may be solved exactly as the Conf‘luoni Hyperge-
ometric Function

Q.’[rs) = N(uvh Fi(—1w, L i(kry kl‘}')) : - (9)

where N(v) = ['(14+v) exp(—v# /2) is the standard Gammow factor, and v; =

‘i is the Sommerfeld paramever. Thv total scattering funcrion, \IJ+CD ¥(r),

is now given by

lIJZ(r) = exp(ikr)N(v ) N(v2); Fr(—tin, 1, i(kry — kry))*
#|F1(—iUg,1;f{k7'2“kfz)) y _ (())

A similar state has been used by a numnber of authors (see cr [6,8]) to
describe the electronic wave function. for ionization processes in ion-atom
collisions. It is however to our knowledge the first time the state has been
suggested to describe an electron in the field of two fixed charges.

It is reaclily seen that the state in eq. 2.1 asymptotimlly satisfies the
Schrédinger equation (£—H)¥} = 0 to order O( ) WhICh in turn shows that
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the wave function itself is correct asymptotically to order O(L). However,

in practical calculations of the scattering amplitude it is not the asymptotic
form but rather the behavior of the wave functlon for small r; or 12 lImL
matters. Writing Wy as a function of r;:

Wi(r;) = exp(rkrl)l\'(ul)lFl(-—i:/;. 1, 2(Ary — kry))
ex2(ikB)N (1), Fi(—iva. 1,i(k|ry — R| = k(r; — R))) =
¥ir(r1) x exp(.ik%)!\’(ug)lﬂ(—iuz, 1L,i(klry = R|—k(ri = R))) (7)
(where d:,‘:‘(rl) is a Coulomb state in the field of Z,), we easily show that the
state in eq. 2.1 approaches the intuitive result of a Coulomb distorted state

in the closer centre. The distortion on the Coulomb state. 3 (r;). in eq. 7 is
f01 not too small R well approximated by

" (kry - - k(r, — R))*? exp(zk—) (8)
which is only a slowly varying phase factor. The same in true in the small

r, region.

2.2 The-Eikonal Approximation

Assuming that @; does not vary rapidly with »; and neglecting the Laplasian
_in eq. 3 we f.nd a solution corresponding to the eikonal approximation

—Z;

T2

dr’) (9)

t{;:E"'k(r) e

* Here v is the velocity of the incoming electron and the integration path, €.

is taken fromn long before the collision along and approximate (sometimes

‘the classical) trajectory of the electron to the position r. When the encrgy

of the electron is far greater than the potential in which the election is

- moving, 1/2k? > V(r), it may be valid to approximated the integration

path, C, by a straight line. When the charges at the two centres arc of

similar magnitude but different sign, Z = Z; = —Z,. the combined potential

falls of as V(r) = 7m' for larger r. In this case it is particalar valid to use
the straight line appm\nmatlon In this case the integral in eq. 9 is casily

evaluated and we find : = i

UEER(R,r) = exp(ikr)(klr + 3| + kr + Kty :
(ke — 8 + ke = kR yia o (10}
e 18 | T e A



~ere we have included the constant phase factor k'(*1+2),
It is readily seen that the asymptotic form of W*E'k(R r) is given by the
>duct of two single centre eikonal approximations -

: +Eik (Y — . e Lo (Lo — L)t
lim ¥E™(r) = exp(ikr)(kr — kr)*! (kr — ke)*™? (11)

ain to order O(+). This’is the correct asymptotic form for an electron in
e potentia. of the.combined field fromn the two Coulomb centres. However,
explained above the asymptotic form is not important in calculatious
the scattering amplitude - except for identifying the momentum of the
=ctron long after the collision. It is our understanding that state in the
1- 10 contains important two centre dynamics which is not present in the
ymptotic state in eq. 11.

Conclusion

e have derived two different approximations for the two Coulomb-centre
-oblem. Both approximations have a correct form for all charges in the
symptotic region but differs at smaller distances. The first approximation
BBK type and the second one is an eikonal two centre approximation.
oth of these approximations factories into a product wave function where
wch factor only depends on one coordinate. Combined with a plan wave to
ascribe the inter-nuclear motion the first approximation has been used by
aumber of authors in describing ionization in ion-atom collisions. Due to
1e factorization of the wave function it is possible in theories of the CDW-
IK type [9] to separate the resulting six dimensional T-matrix integralion
| two three dimensional integrations. This is also possible with the other
pproXimation obtained here and interesting two centre effect might appear.

~
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