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ABSTRACT  
The Tavt ore field is located in the northern part of Mongolia. The ore field containing the Tavt gold 

deposit, which covers 90 square km, is in the Dzhida terrane at the junction of two regional faults that trend NW 
and NE, respectively. This terrane, which spans the border between Mongolia and Russia is overlapped and 
stitched with Orkhon-Selenge trough assemblages. The geology of the deposit consists of the Early Paleozoic 
Dzhida intrusive complex, the Middle Paleozoic Tes intrusive complex, the Late Paleozoic Selenge intrusive 
complex, the Early Mesozoic Orkhon complex, and the Ediacaran-Early Cambrian metavolcanic Badariingol 
formation, Early Cambrian silicic-terrigenous-carbonate Burgelt formation. Zircons SHRIMP U–Pb ages from 
the Tavt intrusive rocks are slightly different: 505.3+3.8 Ma for plagiogranites, 512.7+4.1 to 514.4+3.0 Ma for 
granodiorites, 506+3.4 Ma for quartzmonzodiorites, 510.1+2.9 Ma for monzodiorites and 509.8+3.7 Ma for 
subalkaline diorites, respectively. It indicates that the Dzhida intrusions have formed at the island arc 
environment since the middle Cambrian ages.  

 
Highlights 
The zircons SHRIMP U–Pb ages are slightly different: 505.3+3.8 Ma for plagiogranites, 512.7+4.1 to 

514.4+3.0 Ma for granodiorites, 506+3.4 Ma for quartzmonzodiorites, 510.1+2.9 Ma for monzodiorites and 
509.8+3.7 Ma for subalkaline diorites, respectively. Tavt ore field is located in the Dzhida terrane, which has 
formed at the island arc environment during the middle Cambrian age. 
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1. Introduction 
The Tavt ore field is located in the 

northern Mongolia that occupies in the Central 
Asian Orogenic Belts. Mongolia is one of the 
largest Phanerozoic continental growth 
province. Geographically, the Tavt ore field is 
located close to the Russian border in Bulgan 
aimag, 650 kilometers northwest of 
Ulaanbaatar, 50 kilometers west of the Erdenet 
mining complex (Fig.1). The ore field 
containing the Tavt gold deposit is in the 
Dzhida terrane (Badarch et al., 2002) at the 

junction of two regional faults that trend NW 
and NE, respectively. This ore field is spatially 
combined with a large area of the Dzhida 
intrusive complex (early Paleozoic) and 
contains more gold and sulfide-bearing quartz 
veins than other complexes (Tsend-Ayush and 
Buldakov, 1998). 

In I983, the Mongolian geological 
mapping expedition performed a preliminary 
geological survey of 1:1500000. The result of 
this survey, they found quartz veins with 
mineralization of gold, silver, copper, 
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molybdenum. Prospecting and reserve 
estimation of the Tavt gold deposit was 
completed by the “M and Diamond” 
Mongolian-Russian joint company between 
1995 and 1998 (Tsend-Ayush and Buldakov, 
1998). This occurrence was named “Eren”. 
Since I997, it has been named “Tavt”.  

Previously, detailed geochronological 
studies have not been performed on this 
particular field. The main purpose of this paper 
focuses on the zircon U–Pb age. Based on the 
focuses, we will explain the timing.  

 
2. Geology  
The Tavt ore field covers 90 square km 

and is in the Dzhida terrane (Badarch et al., 
2002) which spans the border between 
Mongolia and Russia. It is also overlapped and 
stitched with Orkhon-Selenge trough 
assemblages. The Russian part of the Dzhida 
terrane is composed of a stratified island arc 
complex restricted to a narrow strip along a 
NW regional shear zone. The western part of 
the shear zone is characterized by a huge area 
of the plagiogranite-tonalite-diorites. The 
Mongolian part of the Dzhida terrane occupies 
a much larger area than the Russian part 
(Gordienko et al., 2007, S.Khorolsuren et al., 
2018). Geologically, the Mongolian part of the 
Dzhida terrane is located among the Tuva-
Mongolia microcontinent, the Hamar-Davaa 
terrane, and volcano-plutonic Orkhon-Selenge 
trough. The Tuva-Mongolian Massif 
microcontinent has a Precambrian 
metamorphic basement and a Ediacaran-
Cambrian carbonate cover (Kuzmichev, 2004; 
Gordienko et al., 2007). The Hamar-Davaa 
terrane is located in the northeast of Lake 
Hovsgul and extends to the Russia that is 
composed of Precambrian gneiss, schist, 
amphibolite, marble and quartzite 
metamorphosed to granulite facies (Badarch et 
al., 2002; Gordienko et al., 2007). The geology 
of the deposit consists of the Early Paleozoic 

Dzhida intrusive complex, the Middle 
Paleozoic (D2-3) Tes intrusive complex, the 
Late Paleozoic (P3-T1) Selenge intrusive 
complex, the Early-Mesozoic (T3-J1) Orkhon 
complex, and the Ediacaran-Early Cambrian 
metavolcanic Badariingol formation, Early 
Cambrian silicic-terrigenous-carbonate 
Burgelt formation (Tsend-Ayush and 
Buldakov, 1998, S.Khorolsuren et al., 2018) 
(Fig. 1).  

    The Tavt ore field is mainly hosted in 
the Early Paleozoic Dzhida intrusive complex 
(Tsend-Ayush and Buldakov, 1998). The 
Dzhida intrusive complex, which is widely 
distributed in the north, south, and central part 
of the Tavt ore field, contains more gold and 
sulfide-bearing quartz veins than other 
complexes. Two separate phases are 
distinguished. The first phase comprises 
gabbro, gabbrodiorite, and diorites (quartz 
diorites, subalkaline diorites, and 
monzodiorites) which have gradual transitions. 
The first phase rocks are distributed in most of 
the central, southwestern and the northeastern 
parts of the area. These rocks contain many 
mafic minerals which consist of amphibole-
biotite, rare amphibole-pyroxene; therefore, 
they are black-gray, green-gray colored, 
medium-grain size, and sometimes weakly 
porphyritic structures, gneissic or massive 
textures. The diorites are very widely 
distributed among them. These rocks occur in 
20 square kilometers irregular or extensional 
bodies. The second phase is dominated by 
medium grained biotite-hornblende 
granodiorites and plagiogranites that are light-
gray, medium grained weakly gneissoid rocks. 
These rocks are in contact with the first phase 
rocks in the southwestern, central part. Their 
form and locations are controlled by the NW-
trending and NE-trending faults. Dzhida 
intrusive complex’s granodiorite and 
plagiogranites are strongly altered by 
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hydrothermal brine fluids, and associated with 
other intrusive complexes intrusive rocks. 

 

 
Fig. 1. Geological map of the Tavt gold deposit. 1. a-alluvial, b-colluvial; 2. Early Cambrian silicic-

terrigenous-carbonate Burgelt formation; 3. Ediacaran-Early Cambrian metavolcanic Badariingol formation; 
Early Paleozoic: 4. granodiorite-tonalite, plagiogranite, 5. gabbro, gabbro-diorite; 6. diorites (quartz diorites, 
subalkaline diorites, and monzodiorites; Middle Paleozoic: 7.granites; Late Paleozoic: 8. subalkaline granites, 
9. granosyenite, 10. syenite; Early Mesozoic: 11. medium–coarse grained porphyritic leucogranites, 12. fine 
grained aplite-like leucogranites; 13. Faults a.indicated, b.inferred; 14. a.gold-quartz veins, b.boundaries of 

quartz vein groups; 15.a.dip direction, b.hornfels; 16. Gold-silver-copper occurrences 
 

 
3. Samples and analytical methods 
3.1. Zircon sample preparation and 

analytical procedure for SHRIMP U-Pb dating  
Six samples were collected (ТV-1-14, 

ТV-2-9, ТV-3a-3, ТV-3a-22, ТV-40-2, and 

ТV-2-13) from the Dzhida complex of the Tavt 
gold deposit field area, which is located in the 
northern part of Mongolia (Fig. 1). Zircons for 
the SHRIMP geochronology were separated 
from granodiorite, plagiogranite, 
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quartzmonzodiorite, monzodiorite and 
subalkaline diorite of the Early Paleozoic 
Dzhida intrusive complex (select a fresh, 
unweathered rock samples).  

   The rock samples were crushed with a 
jaw crusher and sieved. The sieved fraction 
was washed ultrasonically in distilled water to 
exclude powder residue, and then dried in an 
oven at 800C. Magnetite was removed with a 
hand magnet, and the magnetite free fraction 
was then passed through an isodynamic 
magnetic separator. Zircon grains were 
handpicked under a binocular microscope and 
mounted, along with pieces of the FC1 zircon 
standard (1099Ma, Paces and Miller, 1993), 
onto adhesive tape, enclosed in epoxy resin and 
then polished to about half their thickness.  

   The mount was then cleaned and gold-
coated and photographed in reflected and 
transmitted light. The mount was photographed 
in backscattered (BSE) and 
cathodoluminescence (CL) images that are 
used to examine the internal structure of the 
analyzed zircons and with petrographic 
observations guided the selection of analytical 
spots, using a JEOL JSM-6610LV scanning 
electron microscope at Korea Basic Science 
Institute (KBSI). The U–Pb isotopic analyses 
were conducted using a SHRIMP IIe housed at 
KBSI and detailed analytical procedures are 
described by Willams (1998). The Squid 2.50 
and Isoplot 3.71 programs were used in the 
ages and concordia diagrams (Ludwig, 2008, 
2009).  

 
4. Results 
4.1. Zircon SHRIMP U–Pb dating  
4.1.1. Granodiorite (sample ТV-1-14) 
Zircons from sample ТV-1-14 are 

colorless, transparent, and subhedral to 
euhedral, and stubby in shape (Fig. 2a). Most 
are transparent and colorless, whereas a few 
high-uranium crystals are dark and opaque. 
Euhedral concentric and oscillatory zoning is 

common in most crystals; no inherited zircon 
cores were observed. They range from ∼130 to 
260µm in length, with length: width ratios 
between 1.5:1 and 2.5:1. A total of 16 spot 
analyses were made on 14 zircons (Fig. 3a). 
They have U and Th contents and Th/U ratios 
ranging from 37-125 ppm, 25-96 ppm and 
0.65-1.03, respectively (Table 1). The best 
estimate of the crystallization age of sample 
ТV-1-14, based on the weighted mean 
206Pb/238U ratio is 514.4±3.0 Ma (95% 
confidence) (Fig. 4a). 

4.1.2. Granodiorite (sample ТV-2-9) 
Zircon crystals in this sample are big, 

equant to euhedral, up to 125–325µm long, 
with length to width ratios of around 1.5:1 to 
1.7:1(Fig. 2b). Most of the crystals are clear 
and colorless. In euhedral zircon crystals, 
concentric and oscillatory zoning is common 
and no inherited zircon cores are observed. A 
total of 22 spot analyses were made on 19 
zircons (Fig. 3b). Their U and Th contents and 
Th/U ratios range respectively from 34-150 
ppm, 26-215 ppm and 0.63-1.65 (Table 1). All 
22 analyses have indistinguishable 206Pb/238U 
ratios within analytical error, and a weighted 
mean age of 512.7±4.1 (95% confidence) (Fig. 
4b). This is the best estimate of the 
crystallization age of sample ТV-2-9.  
4.1.3. Plagiogranite (sample ТV-3a-3) 

Zircon grains in this sample are mostly 
big stubby or equant to euhedral, up to 140–300 
μm long, with length to width ratios are 1.3:1 
(Fig. 2c). Most are transparent and colorless, 
although a few are dark brown and turbid due 
to high uranium content. Euhedral concentric 
and oscillatory zoning is well-developed in 
most crystals, and no inherited zircon cores 
were observed. A total of 22 spot analyses was 
made on 19 zircon grains (Fig. 3c) and yield a 
weighted mean 206Pb/238U age of 505.3±3.8Ma 
(95% confidence) (Table 1 and Fig. 4c). The 
zircons have variable of Th (26-156 ppm) and 

C 
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U (38-165 ppm). Th/U ratios vary between 
0.62 and 1.10. 

4.1.4. Monzodiorite (sample ТV-3a-22) 
Zircon grains were mostly clear, 

transparent and equant to euhedral with 
concentric and oscillatory zoning (Fig. 3d), up 
to 100–320 μm long, with length to width ratios 
of about 2:1 to 1.8:1 (Fig. 2d). Uranium and 
thorium concentrations are as follows: Th=20-
76 ppm and U=31-91 ppm. Th/U ratios vary 
between 0.56 and 1.09 (Table 1). The eighteen 
analyzed spots of 16 zircon grains and yield a 
weighted mean 206Pb/238U age of 510.1±2.9 Ma 
(95% confidence interval) (Fig. 4d).  

4.1.5. Quartzmonzodiorite (sample ТV-
40-2) 

Zircon grains in this sample are euhedral, 
prismatic to elongate 250–450 μm long, with 
length to width ratios between 2:1 and 3:1 (Fig. 
2e). Most are transparent and colorless, 
whereas a few high-uranium crystals are dark 
and opaque. CL imagings of most of the 
prismatic, elongated and fragmented larger 
grains have parallel bands and few grains are 
oscillatory zoned, although some portions are 
darker with less distinct zoning  (Fig. 3e). The 
eighteen analysed spots of sixteen zircon grains 
from this sample were performed by SHRIMP 
(Table 1). Uranium and thorium concentrations 
are as follows: Th=20-287 ppm and U=38-251 
ppm, with Th/U ratios ranging from 0.45 to 
1.19. The best estimate of the crystallization 
age of sample ТV-40-2, based on the weighted 
mean 206Pb/238U ratio, is 506±3.4 Ma (95% 
confidence) (Fig. 4e). 

4.1.6. Subalkaline diorite (sample ТV-2-
13) 

Zircon crystals in this sample are 
euhedral, a prism to elongate, up to 200–475 
μm long, with length to width ratios of around 
1.6:1 to 3.2:1 (Fig.2f). Most are clear and 
colorless except for few dark brown and turbid 
crystals. CL imaging is similar to 
quartzmonzodiorite (Sample TV-40-2) (Fig. 

3f). These two samples (ТV-40-2, ТV-2-13) 
internal textures consistently observed in 
zircons from mafic and alkaline rocks (Hoskin, 
2000; Yi et al., 2012). A total of 20 spot 
analyses were made on eighteen zircons and 
one of them was rejected (it has higher U, Th 
contents). They have variable abundances of 
Th (24-374ppm) and U (48-253 ppm). Th/U 
ratios vary between 0.43 and 1.53 (Table 1). 
All 19 analyses have indistinguishable 
206Pb/238U ratios within analytical error and a 
weighted mean age of 509.8 ±3.7 Ma (95% 
confidence) (Fig. 4f). This is the best estimate 
of the crystallization age of sample ТV-2-13. 

The all these samples yielded Concordia 
ages between 505.3±3.8Ma and 514.3±4Ma, 
which correspond to the Middle Cambrian (Ɛ2-

3). The igneous origin zircons have Th/U>0.30 
ratios (Hoskin and Schaltegger, 2003; Lang et 
al., 2009), the zircon SHRIMP U–Pb dating 
results are listed in Table 1, and related 
concordant diagrams are shown in Fig. 4. The 
TV-1-14, TV-2-9 and TV-3a-3 images on the 
CL have an oscillatory zone that is narrow (Fig. 
3a, b and c). It directs that zircons were formed 
in the felsic rocks. As for the other three 
samples (TV-3a-22 monzodiorite, TV-40-2 
quartz monzodiorite, and TV-2-13 subalkaline 
diorite) (Fig. 3d, e and f), the oscillatory zone 
is wider compared to previous three samples. 
Because of it, we assume that it directs the 
intermediate rocks. We regard that this 
variation of zone is similar to the pattern of 
plagioclase polysynthetic. Because as it 
becomes felsic plagioclase, the pattern of the 
twin becomes more narrow. On the other hand, 
as it becomes mafic, the pattern develops 
broadly.  
 

5. Discussions 
Early Paleozoic (Middle-Late Cambrian-

Ordovician) magmatism manifested in the 
west, northwestern, north, center, southeastern 
part of Mongolia, as the different shapes 
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intrusive bodies. The intrusive rocks of Dzhida 
complex have been described by many Russian 
geologists, especially, in Russian part that 
recognized three phases of the Dhzida 
complex: gabbrodiorite, tonalite-diorite, and 
tonalite-plagiogranite (Distanova, 1975; 
Gordienko et al., 2006, 2007). The Dzhida 
intrusive complex occupies western and 
eastern fields of the Mongolian part of the 
Dzhida terrane. The western part of the 
Mongolian Dzhida terrane mainly consists of 
Kupchinski massif which has occurred in the 
Tavt ore field. Especially, it is spatially 
combined with a large area of the Early 
Paleozoic magmatism, represented by 
plagiogranites, granodiorite, diorites, and small 
intrusions of mafic rocks (gabbro, 
gabbrodiorites).  

Zircons from the Early Paleozoic Dzhida 
intrusive complex indicate slightly different 
SHRIMP U–Pb ages: 505.3±3.8 Ma for 
plagiogranite, 512.7±4.1 to 514.4±3.0 Ma for 
granodiorites, 506±3.4 Ma for 
quartzmonzodiorite, 510.1±2.9 Ma for 
monzodiorite and 509.8±3.7 Ma for 
subalkaline diorite, respectively. These ages 
correspond to two samples from the Khotolson 
(quartzdiorite-504±2 Ma) and Modonhul 
(gabbro-506±1Ma) massifs in the Russian 
territory (Gordienko et al., 2007). For this 
reason, we suggest that the Dzhida complex 
intrusions were emplaced the Middle Cambrian 
ages (Ɛ2-3).  

 

 
Fig. 2. SEM images of selected zircon crystals separated of Tavt ore field rocks: a-b-granodiorites; c-

plagiogranite, d-monzodiorite, e-quartzmonzodiorite, f-subalkaline diorite. 
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Fig. 3. Internal structures of zircon grains shown by the cathodoluminescence (CL) analysis of Tavt ore field 

samples: a-b-granodiorites; c-plagiogranite, d-monzodiorite, 
e-quartzmonzodiorite, f-subalkaline diorite. 

 
Fig. 4. Zircon SHRIMP U–Pb concordia diagrams and weighted average 207Pb corrected 206Pb/238U ages of the 
samples from the Tavt ore field: a-b-granodiorites; c-plagiogranite, d-monzodiorite, e-quartzmonzodiorite, f-

subalkaline diorite. 
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Table 1. Summary of SHRIMP U-Pb zircon results for 6 samples of Dzhida complex 

Spot 

 

206Pbc (%) 
 

U 
(ppm) 

 
Th (ppm) 

 
Th/U 

(1) 
238U 

/206Pb* 
±% 

(1) 
207Pb* 
/206Pb* 

±% 

(2) 
206Pb 
/238U 

Age (Ma) 
TV-1-14 Granodiorite 

TV-1-14_1 0.24 125 96 0.79 12.00 1.0 0.0547 2.4 518 ±5 
TV-1-14_2 0.33 84 73 0.90 12.02 1.1 0.0531 3.5 518 ±6 
TV-1-14_3 0.51 68 48 0.72 12.10 1.2 0.0521 5.7 515 ±6 
TV-1-14_4 0.37 90 58 0.67 12.15 1.1 0.0565 2.8 510 ±6 
TV-1-14_5 0.53 75 57 0.79 11.96 1.2 0.0584 2.8 517 ±6 
TV-1-14_6 0.73 37 25 0.68 12.05 1.5 0.0542 8.0 516 ±7 
TV-1-14_7 1.24 43 28 0.67 12.21 1.5 0.0472 9.6 514 ±7 
TV-1-14_8 0.52 54 37 0.71 12.23 1.4 0.0445 8.3 515 ±7 
TV-1-14_9 0.41 67 43 0.67 11.83 1.3 0.0520 5.1 527 ±6 
TV-1-14_10 0.52 68 66 0.99 11.97 1.3 0.0535 4.8 520 ±6 
TV-1-14_11 0.15 112 63 0.58 12.13 1.1 0.0482 4.7 516 ±6 
TV-1-14_12 0.66 77 57 0.77 12.17 1.2 0.0577 3.3 509 ±6 
TV-1-14_13 1.03 46 29 0.65 12.43 1.5 0.0413 11.6 508 ±7 
TV-1-14_14 0.69 69 51 0.77 12.21 1.3 0.0534 4.9 510 ±6 
TV-1-14_15 0.94 56 56 1.03 12.10 1.3 0.0545 5.4 514 ±7 
TV-1-14_16 0.62 76 70 0.94 12.31 1.2 0.0552 4.0 505 ±6 

TV-2-9 Granodiorite 
TV-2-9_1 0.53 41 26 0.66 12.59 1.4 0.0457 8.7 499 ±7 
TV-2-9_2 0.28 79 73 0.96 12.45 1.1 0.0571 2.4 498 ±6 
TV-2-9_3 0.75 65 65 1.03 12.18 1.2 0.0573 3.7 509 ±6 
TV-2-9_4 0.38 145 125 0.89 12.42 1.0 0.0563 2.2 500 ±5 
TV-2-9_5 0.20 134 215 1.65 11.86 1.1 0.0553 2.2 523 ±5 
TV-2-9_6 0.77 54 55 1.06 12.37 1.3 0.0513 6.0 505 ±6 
TV-2-9_7 0.56 46 29 0.65 12.28 1.3 0.0554 4.6 506 ±7 
TV-2-9_8 0.55 44 37 0.85 11.90 1.4 0.0480 7.5 526 ±7 
TV-2-9_9 0.21 53 45 0.88 11.91 1.2 0.0578 2.7 520 ±6 
TV-2-9_10 0.20 150 135 0.93 12.12 1.0 0.0567 1.7 512 ±5 
TV-2-9_11 0.16 126 110 0.90 11.79 1.0 0.0565 1.9 526 ±5 
TV-2-9_12 0.49 55 50 0.93 11.92 1.2 0.0580 3.1 519 ±6 
TV-2-9_13 0.27 102 78 0.80 12.11 1.1 0.0577 2.0 511 ±5 
TV-2-9_14 0.20 119 96 0.83 11.90 1.0 0.0574 1.9 520 ±5 
TV-2-9_15 0.35 116 74 0.66 11.88 1.0 0.0572 2.1 522 ±5 
TV-2-9_16 0.07 126 112 0.92 12.04 1.1 0.0545 2.4 516 ±5 
TV-2-9_17 0.20 123 135 1.14 12.43 1.1 0.0548 2.5 500 ±5 
TV-2-9_18 1.42 34 29 0.90 12.30 1.5 0.0536 8.0 506 ±7 
TV-2-9_19 0.89 53 46 0.91 12.34 1.4 0.0476 8.9 508 ±7 
TV-2-9_20 1.27 46 31 0.70 12.20 1.3 0.0560 5.6 509 ±6 
TV-2-9_21 0.79 56 34 0.63 11.87 1.2 0.0577 3.6 521 ±6 
TV-2-9_22 1.17 52 48 0.96 11.90 1.3 0.0608 3.9 518 ±6 
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Spot 

 

206Pbc (%) 
 

U 
(ppm) 

 
Th (ppm) 

 
Th/U 

(1) 
238U 

/206Pb* 
±% 

(1) 
207Pb* 
/206Pb* 

±% 

(2) 
206Pb 
/238U 

Age (Ma) 

Spot 

TV-3a-3 Plagiogranite 
TV-3a-3_1 1.20 38 26 0.72 12.35 1.5 0.0553 6.6 503 ±7 
TV-3a-3_2 0.96 51 33 0.68 12.05 1.5 0.0574 6.7 514 ±7 
TV-3a-3_3 0.40 70 74 1.10 12.22 1.2 0.0546 3.7 509 ±6 
TV-3a-3_4 0.54 49 34 0.71 12.08 1.3 0.0547 4.7 514 ±7 
V-3a-3_5 0.10 103 82 0.83 12.15 1.1 0.0524 3.2 513 ±6 
TV-3a-3_6 0.77 48 49 1.06 12.43 1.3 0.0620 2.7 496 ±6 
TV-3a-3_7 0.72 52 48 0.96 12.15 1.3 0.0601 5.0 508 ±7 
TV-3a-3_8 0.66 46 34 0.76 12.65 1.4 0.0475 7.8 496 ±6 
TV-3a-3_9 0.39 165 156 0.97 12.52 1.0 0.0600 1.2 494 ±5 
TV-3a-3_10 0.40 97 102 1.09 12.19 1.1 0.0541 3.4 510 ±6 
TV-3a-3_11 0.67 45 30 0.68 12.52 1.4 0.0551 5.0 497 ±7 
TV-3a-3_12 0.88 48 35 0.76 12.49 1.3 0.0561 6.1 497 ±7 
TV-3a-3_13 0.40 73 44 0.62 12.43 1.2 0.0535 3.9 501 ±6 
TV-3a-3_14 0.68 48 48 1.02 12.42 1.3 0.0551 5.0 500 ±6 
TV-3a-3_15 0.72 41 31 0.78 12.35 1.4 0.0494 7.5 507 ±7 
TV-3a-3_16 0.29 58 46 0.83 12.09 1.3 0.0507 7.2 517 ±7 
TV-3a-3_17 0.58 47 43 0.95 12.08 1.4 0.0474 7.8 519 ±7 
TV-3a-3_18 0.72 65 57 0.91 12.09 1.2 0.0585 3.5 512 ±6 
TV-3a-3_19 0.35 55 35 0.65 12.31 1.3 0.0489 7.5 508 ±7 
TV-3a-3_20 1.22 40 32 0.83 12.51 1.4 0.0554 6.4 497 ±7 

TV-3a-22 Monzodiorite 
TV-3a-22_1 0.33 83 55 0.69 12.33 1.2 0.0541 3.5 505 ±6 
TV-3a-22_2 0.53 72 72 1.03 12.32 1.3 0.0517 4.9 507 ±6 
TV-3a-22_3 0.51 41 26 0.64 12.33 1.5 0.0452 9.2 510 ±7 
TV-3a-22_4 0.57 57 33 0.60 11.81 1.3 0.0593 3.2 523 ±7 
TV-3a-22_5 0.57 71 71 1.03 12.29 1.2 0.0557 3.7 505 ±6 
TV-3a-22_6 0.66 72 76 1.09 12.26 1.2 0.0573 4.6 506 ±6 
TV-3a-22_7 0.78 56 33 0.61 12.15 1.3 0.0571 4.4 510 ±6 
TV-3a-22_8 0.38 91 72 0.82 12.22 1.1 0.0578 2.5 507 ±6 
TV-3a-22_9 1.06 31 20 0.69 12.16 1.6 0.0548 10.2 511 ±8 
TV-3a-22_10 0.37 78 46 0.60 12.23 1.2 0.0557 4.0 508 ±6 
TV-3a-22_11 1.16 51 43 0.87 12.02 1.3 0.0547 6.0 517 ±7 
TV-3a-22_12 0.67 58 58 1.04 12.38 1.3 0.0563 4.1 501 ±6 
TV-3a-22_13 1.13 37 27 0.74 12.07 1.5 0.0538 7.0 515 ±7 
TV-3a-22_14 0.81 65 67 1.07 12.19 1.2 0.0583 3.6 508 ±6 
TV-3a-22_15 0.66 58 52 0.94 12.10 1.3 0.0554 4.4 513 ±6 
TV-3a-22_16 0.61 77 68 0.92 12.04 1.2 0.0577 3.1 514 ±6 
TV-3a-22_17 0.32 88 73 0.86 12.05 1.1 0.0560 2.9 515 ±6 
TV-3a-22_18 0.94 49 27 0.56 12.06 1.3 0.0580 4.5 513 ±7 
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(ppm) 

 
Th (ppm) 

 
Th/U 

(1) 
238U 

/206Pb* 
±% 

(1) 
207Pb* 
/206Pb* 

±% 

(2) 
206Pb 
/238U 

Age (Ma) 

Spot 

TV-40-2 Quartzmonzodiorite 
TV-40-2_1 0.46 109 50 0.47 12.12 1.1 0.0496 6.1 516 ±6 
TV-40-2_2 0.31 109 51 0.49 11.88 1.2 0.0479 5.3 527 ±6 
TV-40-2_3 0.98 87 67 0.80 12.32 1.3 0.0511 6.5 507 ±6 

TV-40-2_4 2.40 38 20 0.53 12.73 1.7 0.0449 14.9 494 ±8 
TV-40-2_5 0.99 76 52 0.70 12.20 1.4 0.0517 7.9 511 ±7 

TV-40-2_6 0.48 143 132 0.95 11.82 1.2 0.0545 3.5 526 ±6 
TV-40-2_7 1.35 100 57 0.59 12.49 1.4 0.0457 9.6 503 ±7 

TV-40-2_8 0.90 168 152 0.94 12.31 1.3 0.0552 4.1 505 ±6 

TV-40-2_9 1.81 99 78 0.82 12.40 1.5 0.0491 10.8 505 ±7 
TV-40-2_10 0.57 231 164 0.74 12.21 1.3 0.0540 4.9 510 ±6 
TV-40-2_11 2.01 67 52 0.80 12.32 1.7 0.0491 13.0 508 ±8 

TV-40-2_12 1.47 85 43 0.53 12.35 1.6 0.0477 10.6 508 ±7 
TV-40-2_13 2.73 54 31 0.60 12.76 1.9 0.0424 17.0 495 ±8 

TV-40-2_14 2.28 73 33 0.47 12.53 1.8 0.0447 14.9 502 ±8 

TV-40-2_15 1.21 135 99 0.76 12.16 1.6 0.0559 10.5 510 ±7 
TV-40-2_16 0.68 251 287 1.19 12.33 1.3 0.0552 3.0 504 ±6 
TV-40-2_17 1.95 98 42 0.45 12.28 1.6 0.0561 11.1 505 ±8 
TV-40-2_18 0.89 205 191 0.96 12.38 1.4 0.0549 6.1 502 ±7 

TV-2-13 Subalkaline diorite 
TV-2-13_1 1.82 101 49 0.50 12.69 1.6 0.0499 11.2 493 ±8 
TV-2-13_2 0.18 152 78 0.53 12.06 1.0 0.0556 2.1 515 ±5 
TV-2-13_3 0.84 71 46 0.66 12.64 1.2 0.0534 4.5 493 ±6 
TV-2-13_4 0.23 147 61 0.42 12.14 1.0 0.0553 2.2 512 ±5 
TV-2-13_5 0.46 90 38 0.44 12.03 1.1 0.0557 3.1 516 ±6 
TV-2-13_6 0.78 52 24 0.48 12.31 1.3 0.0550 4.8 505 ±6 
TV-2-13_7 0.10 180 191 1.09 12.13 1.0 0.0547 1.9 512 ±5 
TV-2-13_8 0.14 253 374 1.53 11.93 1.0 0.0562 1.4 520 ±5 
TV-2-13_9 0.55 62 43 0.71 12.07 1.2 0.0585 3.0 512 ±6 
TV-2-13_10 0.80 55 25 0.46 12.43 1.2 0.0596 3.3 497 ±6 
TV-2-13_11 0.55 67 43 0.67 12.24 1.2 0.0570 4.7 507 ±6 
TV-2-13_12 0.41 101 68 0.70 12.00 1.1 0.0591 2.0 515 ±5 
TV-2-13_13 0.86 71 35 0.50 12.22 1.2 0.0572 5.0 507 ±6 
TV-2-13_14 0.52 82 52 0.65 12.07 1.1 0.0582 2.7 513 ±6 
TV-2-13_15 0.26 80 46 0.60 12.04 1.1 0.0554 3.0 516 ±6 
TV-2-13_16 0.76 48 33 0.71 12.24 1.3 0.0503 8.7 510 ±7 
TV-2-13_17 0.47 202 210 1.07 12.21 1.0 0.0562 2.0 508 ±5 
TV-2-13_18 0.41 1753 620 0.37 13.32 0.9 0.0561 0.6 467 ±4 
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TV-2-13_19 0.46 54 32 0.61 11.81 2.0 0.0534 4.8 527 ±10 
TV-2-13_20 0.33 126 95 0.78 12.24 1.1 0.0560 2.4 507 ±5 

 
Pb* -radiogenic Pb. 
(1) -Common Pb corrected using measured 204Pb. 
(2) -Common Pb corrected by assuming 206Pb/238U-207Pb/235U age concordance. 
 

6. Conclusions  
The Tavt ore field mostly hosted in the 

Dhizda intrusive complex that consists of wide 
ranges composition magmatic rocks that are 
associated with the Middle Paleozoic Tes 
intrusive complex, Late Paleozoic Selenge 
complex and Early Mesozoic Orkhon complex. 
Euhedral concentric zoning is common and no 
inherited zircon cores were observed, and all of 
the zircon Th/U ratios are bigger than 0.3, 
indicating it is of magmatic origin. Zircons 
from the Early Paleozoic Dzhida intrusive 
complex indicate slightly different SHRIMP 
U–Pb ages: 505.3+3.8 Ma for plagiogranites, 
512.7+4.1 to 514.4+3.0 Ma for granodiorites, 
506+3.4 Ma for quartzmonzodiorites, 
510.1+2.9 Ma for monzodiorites and 
509.8+3.7 Ma for subalkaline diorites, 
respectively.  
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