M.ERDENE

Department of Archaeology and Anthropology, National University of Mongolia e-mail: merdene@num.edu.mn

Keywords: Cranial discrete traits, Inner Mongolia, Altai Mountain, Buryatia

ABSTRACT. Results of the comparative cranial non-metric study of human remains unearthed in the territories of South Siberia, Altai, Buryatia and Inner Mongolia belonging to different historical periods, from Neolithic up to Mongolian (12-13th c AD) periods show general differentiation between populations from eastern Mongolia and Inner Mongolia on the one hand, and populations from Xingjian, Altai, South Siberia, Buryatia and western Mongolia on the other hand. Warring States and Bronze Age populations from Inner Mongolia, and Bronze Age Slab grave population from eastern Mongolia form a separate cluster. Position of Chandman population (with no coffin) from western Mongolia in this cluster might show a probable relationship of that population with the populations from eastern Mongolia or other regions in Inner Mongolia. Cluster analyses showed a picture of very heterogeneous population structure of inhabitants from Southern Siberia, Altai and Western Mongolia during Eoneolithic, Bronze and Early Iron Ages. Close relationship between Neolithic population from central Mongolia and Early Iron Age population from Xingjian; and between Neolithic Baikal, Chandman (with wooden chamber) from western Mongolia, and Afanasev from Altai Mountain indicate about their genetical affinities and biological continuity of those archaeological populations. Cluster analyses of 2nd BC to 8th AD period samples revealed very close characteristics for Xiongnu populations from Altai and Mongolia, and some similarity between Turkic from Altai and Han from Inner Mongolia. Comparative analysis of medieval period and contemporary populations from Baikalia, Buryatia, Mongolia, Inner Mongolia and Northeast Asia show more or less compact picture. Nevertheless, we can observe some tendencies in their biological affinities. Early Mongolians from Buryatia and Qidan from Inner Mongolia are closer to each other and Yuan population from Inner Mongolia and Amur and Korean contemporary populations are

closer to each other. On the other hand Mongolian period populations from Mongolia and modern Buryats are very close to each other, and to some extent close to Northern Chinese. Modern Chinese are found very different from the other populations studied.

There are numbers of publications on the craniofacial morphology of archaeological human remains belonging to different historical periods of Central Asia, South Siberia, Altai mountain region, Baikal Lake region, Inner Mongolia and Mongolia: G.F.Debets (1948), M.G.Levin (1958), I.I.Gokhman (1960, 1967), O.Ismagulav (1970), V.V.Ginzburg and T.A.Trofimova (1972), M.V.Kruvkov and et al. (1978), D.Tumen (1977, 1978, 1979, 1985, 1987, 1992, 2002, 2003, 2007), N.N.Mamonova (1979), V.P.Alexseev and et al. (1980, 1984), A.N.Popov and et al. (1997), A.N.Baghashev (2000), T.A.Chikisheva (2000a, 2000b, 2003), T.A.Chikisheva and D.V.Pozdnyakov (2000), D.V.Pozdnyakov (2001, 2006), A.I.Buraev (2006), Zhang Quan-chao and et al. (2006), Zhu Hong and Zhang Quan-chao (2007), and D.V.Pozdnyakov and S.A.Komissarov (2007). Based on the results of the craniofacial studies of human remains of Asia, the authors drew significant conclusions on the morphological features of the inhabitants of the region and their history, ethnic origin and cross region migration. However, cranial discrete or nonmetric traits of the prehistoric populations from these regions are not widely studied; there are a few research works on the modern Koreans (Park et al., 2001), and some archaeological populations from China (Zhang Hua, 2005; Wei dong et al., 2006).

Cranial nonmetric, i.e. epigenetic variation, is quite popular in analyzing osteological remains at the population level and has successfully been used to evaluate the evolutionary relations and biological affinities among ancient and contemporary populations from different regions in the world (Finnegan and Marcsik 1979; Hanihara and Ishida 2001a; 2001b; 2001c; 2001d; 2001e; Hanihara et al. 1998; Ishida and Dodo 1992; 1993; 1997; Kozintsev 1972; Ossenberg 1990; Sutter and Mertz 2004; Wenger 1974). The theoretical basis of any such investigation is that 1) the traits are highly genetic in nature; 2) that populations vary in frequencies between even closely related populations; 3) that some consistency is seen without regard to environmental variation; 4) the traits do not vary significantly with age; 5) show little sex difference; 6) show little correlation between the traits used; and 7) are easily defined and have the advantage of being scoreable for highly fragmented skeletal materials. These above assumptions have been tested on many ancient and contemporary populations from Europe, North America and Northeast Asia and were discussed in regard to their ethnic origins and biological relationships.

Cranial nonmetric studies of human remains from different historical periods of Mongolia conducted in previous years (Erdene 2003, 2005a, 2005b, 2006, 2007, 2008) gave us interesting results. However, those studies have not comprised all the historical periods of Mongolia and territorial regions of ancient nomads from Eurasia. In this paper we present the results of comparative cranial non-metric study of human remains from different historical periods (Neolithic, Bronze, Early Iron, and later periods up to

Medieval age) unearthed in Inner Mongolia, China, South Siberia, Buryatia and Baikal Lake region. The present study is the first comprehensive research of its kind comprising the wide range of time and space of ancient nomads from Eurasian steppe.

MATERIALS AND METHODS

Human remains unearthed in the territories of South Siberia, Buryatia and Inner Mongolia belonging to different historical periods are investigated for cranial and mandibular nonmetric traits. The sample consisted of 430 more or less complete skulls of 327 males and 99 females with ages ranging from infantile I to senile. Detailed information on the studied human remains is given in the Table 1 and geographical location of studied anthropological samples is shown on the Fig. 1.

Table 1. Characteristics of the archaeological populations from InnerAsia under
cranial nonmetric study

Historical period, culture	Site	Sample size	Curating institution
	INNER MONGOLIA (NORTH CH	INA)	
Bronze	Jiangjungou	20	Laboratory of
Early Iron age	Nileke, Xinjiang	48	Anthropology,
500-221 BC			Research Center for
Warring States	Dashanquian	54	Chinese Frontier
475-221 BC	Tuchenzi		Archaeology of
Han	Tuchenzi	9	Jilin University,
207 BC-220 AD			Changchun, China
Xianbei	Ba gou	97	
3^{rd} - 4^{th} c. AD	Hulunbuir-Zalanur		
	Liaoning-Beipyo-Lamadong		
	Liaoning-Tsoyang-Zartai yanze		
	Tsayuhuji – Sandovan		
	Tsayuhuji		
	Ulaantsav		
	Ulaantsav-Sandu-dundaji		
	Tsayuzunji-Chilansan		
Qidan	Tuchenzi	29	
10-11 th c. BC	Allucurchin-Yelyu		
	Liaoning-Faku-Imotai		
	Sandu-Chi-an-Haizi		
	Shiliin hot-Dunsan		
	Ulaanhad-Chifeng-Ning-Shanzuizi		
	Wu-nyu-zi		
Yuan	Chengpuzi	52	
12 th -14 th c. BC	Zhenzishan		
	SOUTH SIBERIA and BURYAT	TIA	
Neolithic	Educhanka	8	
4 th millennia – 1700-1300	Makarovo,		
BC	Manzurka		
	Marintui		
	Obhoi,		
	Olihon		
Bronze,	Bertek-33	14	Sector of
Afanasev, Altai Mountain	Karakol		Anthropology,

2 nd millennia BC	Ust-Kuyum		Institute of
Bronze,	Krasnyi Yar	3	Archaeology and
Afanasev, Minusin			Ethnography,
2 nd millennia BC			Siberian Branch of
Early Iron age	Ala-Gail		Russian Academy
Pazyryk, Altai Mountain,	Ala-Gail 2	46	of Sciences,
$5^{\text{th}}-3^{\text{rd}}$ c. BC	Balyk-Sook		Novosibirsk, Russia
0 0 0.20	Baratal-2		,
	Bike-3		
	Bor burgazy-1		
	Bor burgazy-2		
	Bor burgazy-2 Bor burgazy-3		
	Borotal-2		
	Buraty-8		
	Jolin-2		
	Kara Tenesh		
	Maltalu		
	Maltalu-80		
	Ulandryk-1		
East Lassa	Ulandryk-2	6	-
Early Iron age	Kuraiskaya step	6	
Karakob, Altai Mountain,	Kyzyl Bom		
4 th -3 rd c. BC	Torbedok	15	
Early Iron age	Kichik kuzur	17	
Tagar, Minusin	Malye kopyony		
5 th -2th c. BC			-
Xiongnu-Sarmat period	Kara-Bom-11	4	
3rd c BC –2nd c AD			
Turkic period	Jolin-1	3	
6 th -8 th c. AD	Yustyd-12		
Early Mongolian period,	Enhor	20	Department of
Buryatia, 8 th -12th c. AD	Kiya		History and Culture
-	Olihon		of Central Asia,
	Onontycha		Institute of
	Ulanhad		Mongolian Studies,
			Buddology and
			Tibetology,
			Siberian Branch of
			Russian Academy
			of Sciences, Ulan-
			Ude, Russia
Total		430	
1 Utal		730	

Table 2 gives the brief information about the samples used for comparison. Materials for comparison consisted of cranial nonmetric data on prehistoric populations from Mongolia (Erdene, 2003, 2005a, 2005b, 2008), modern population from Korea (Erdene, 2006), modern Buriats, and populations from Amur River and China (Ishida and Dodo, 1992). Samples of Mongolia include nonmetric data of Neolithic, Bronze Age, Early Iron Age, Xiongnu and Mongolian period, and samples of China include nonmetric data of northern and modern Chinese populations.

Fig. 1. Geographic location of studied cranial samples from South Siberia and Inner Mongolia Legend: 1-Bronze age, Inner Mongolia, 2-Early Iron Age, Xingjian, 3-Warring States, Inner Mongolia, 4-Han, Inner Mongolia, 5-Xianbei, Inner Mongolia, 6-Qidan, Inner Mongolia, 7-Yuan, Inner Mongolia, 8-Neolithic, Buryatia, 9-Bronze age (Afanasev), Altai Mountain and Minusin, 10-Early Iron age Pazyryk and Karakob, Altai Mountain, 11-Early Iron age (Tagar), South Siberia, 12-Xiongnu-Sarmat period, Altai Mountain, 13-Turkic period, South Siberia, 14-Mongolian period, Buryatia

Historical period, culture	Chronology
Neolit Central Mongolia	2500-3000 BC
Bronze-West Mongolia	2500 up to 4 th c. BC
Bronze-East Mongolia, Slab grave culture	2500 up to 3 rd c. BC
Early iron-wooden chamber	7th-2nd c BC
Early iron-stone box	7th-2nd c BC
Early iron-no coffin	7th-2nd c BC
Xiongnu	3rd c BC –2nd c AD
Mongolian period	11th-14th c AD
Buryat	Recent Buriats from Northeast Siberia
Amur	Recent indigenous tribes from Amur River basin: Ulchs, Nanaians, Negidals and Orochs
Modern Korean	Modern Koreans
Northern Chinese	Northern part of China, mainly from Liaoning Prefecture
Modern Chinese	Modern Chinese

Table 2. Ancient and modern populations used for comparison in the present study

Fifty nine discrete cranial traits were examined for frequency distributions. We followed Finnegan and Marcsik (1979), Hauser & De Stefano (1989) and Movsesjan et. al. (1975) for criteria and nomenclatures of the variants. References for the scoring of each trait and descriptions of the statistical methods used in the present study are given in previous papers (Erdene 2005, 2006)

RESULTS AND DISCUSSION

Cranial nonmetric variation of prehistoric populations from Inner Mongolia, Xinjiang, South Siberia and Buryatia

Based on the study by Berry & Berry (1967) that stated the lack of sex difference in the distribution of the cranial nonmetric traits, sex-combined frequencies for each trait have been calculated for each population. From the list of 59 discrete traits examined for each skull in the present study, forty traits with high taxonomical value and sufficient sample size are chosen for subsequent statistical calculations. Incidences of 40 cranial nonmetric traits examined in the studied samples of ancient populations of different historical periods from Inner Mongolia, South Siberia and Buryatia are given in the Table 2. Traits are listed in the anatomical localizations: frontal view-lateral view-vertical view-occipital view-basilar view-mandible. Photos of nonmetric trait incidences are given in the Appendix.

The most common traits observed in the cranial samples of ancient nomads from Inner Mongolia, South Siberia and Baikal Lake region are *Parietal foramen present* (0.609-0.938), *Foramen of Vesalius* (0.429-0.969) and *Condylar canal patent* (0.556-0.957). The traits are observed with the relative frequencies of more than 0.5, with the exceptions Xiongnu population from Gornyi Altai for *parietal foramen present* (0.063) and Turkic population from Altai Mountain for *condylar canal patent* (0.125). The other traits observed with the frequencies more than 0.5 for most of the populations are *supraorbital foramen, accessory lesser palatine foramina*. We scored only *medial supraorbital foramen* (not taking into consideration a supraorbital notch) and ignored *frontal foramen* (additional foramen usually situated laterally from the supraorbital foramen). All the populations except Han sample from Inner Mongolia show the presence of this trait with relative frequencies more than 0.5. *Accessory lesser palatine foramina* is observed in twelve populations out of sixteen, the relative frequencies are the least in Tagar sample and the most in Xiongnu sample from Altai Mountain.

Lambdoid ossicle is one of the common discrete traits in the cranial samples of ancient nomads. Although, the frequency does not reach 50% for most of the samples, the trait is observed in all populations. The average relative frequency is 0.4, while the least relative frequency is 0.222 for Qidan sample and the most relative frequency is 0.667 for Han sample from Inner Mongolia.

	Cranial nonmetric traits		Neolithi	c Baikal	-	Afanasev-Altai mountain				
	Cramai nonmetric traits	Absent	Present	Total	Freq (p)	Absent	Present	Total	Freq (p)	
1.	Metopism	7	0	7	0.036	12	1	13	0.077	
2.	Supraorbital nerve groove	7	0	7	0.036	7	7	14	0.500	
3.	Supraorbital foramen	1	6	7	0.857	3	10	13	0.769	
4.	Trochlear spur	7	0	7	0.036	8	3	11	0.273	
5.	Zygomatico-facial foramen absent	4	2	6	0.333	8	4	12	0.333	
6.	Transverse zygomatic suture vestige	6	0	6	0.042	10	1	11	0.091	
7.	Tympanic dehiscence	6	0	6	0.042	10	1	11	0.091	
8.	Epipteric bone	4	2	6	0.333	8	1	9	0.111	
9.	Wormian bone at squamous suture	4	2	6	0.333	9	0	9	0.028	
10.	Parietal foramen present	2	4	6	0.667	3	7	10	0.700	
11.	Parietal notch bone	4	2	6	0.333	8	1	9	0.111	
12.	Asterionic bone	5	1	6	0.167	9	0	9	0.028	
13.	Sagittal ossicle	5	1	6	0.167	12	0	12	0.021	
14.	Ossicle at the lambda	5	1	6	0.167	9	1	10	0.100	
15.	Lambdoid ossicle	4	2	6	0.333	5	4	9	0.444	
16.	Occipito-mastoid wormians	5	0	5	0.050	7	0	7	0.036	
17.	Inca bone	6	0	6	0.042	8	0	8	0.031	
18.	Biasterionic suture	4	2	6	0.333	8	0	8	0.031	
19.	Palatine torus	3	3	6	0.500	9	1	10	0.100	
20.	Medial palatine canal	6	0	6	0.042	10	0	10	0.025	

Table 3. Incidences of cranial nonmetric traits in the sample of ancient populations from Inner Asia

21.	Accessory lesser palatine foramina	1	5	6	0.833	2	7	9	0.778
22.	Foramen ovale incomplete	6	0	6	0.042	8	0	8	0.031
23.	Foramen spinosum open	6	0	6	0.042	5	3	8	0.375
24.	Foramen spinosum absent	6	0	6	0.042	7	1	8	0.125
25.	Ovale spinosum confluence	6	0	6	0.042	8	0	8	0.031
26.	Foramen of Vesalius	1	5	6	0.833	0	8	8	1.000
27.	Pterygo-spinous foramen	6	0	6	0.042	7	1	8	0.125
28.	Pterygo-alar foramen	6	0	6	0.042	8	0	8	0.031
29.	Precondylar tubercle	3	3	6	0.500	5	2	7	0.286
30.	Condylar facet doubled	6	0	6	0.042	7	1	8	0.125
31.	Hypoglossal canal bridging	3	3	6	0.500	7	1	8	0.125
32.	Condylar canal patent	2	3	5	0.600	1	6	7	0.857
33.	Sagittal sinus groove flexes left	3	3	6	0.500	7	0	7	0.036
34.	Paracondylar process	4	1	5	0.200	3	3	6	0.500
35.	Jugular foramen bridging	4	1	5	0.200	4	2	6	0.333
36.	Digastric groove doubled	5	1	6	0.167	6	3	9	0.333
37.	Mandibular foramen double	5	1	6	0.167	11	0	11	0.023
38.	Mylohyoid bridging	5	1	6	0.167	11	0	11	0.023
39.	Mandibular torus	5	1	6	0.167	10	0	10	0.025
40.	Accessory mental foramen	6	0	6	0.042	10	0	10	0.025

	Afanasev	-Minusin		Early Iro	n age, Pazy	yryk-Alta N	Iountaini	Early Iron age, Karakob-Altai Mountain				
Absent	Present	Total	Freq (p)	Absent	Present	Total	Freq (p)	Absent	Present	Total	Freq (p)	
2	1	3	0.333	45	1	46	0.022	6	0	6	0.042	
2	1	3	0.333	39	7	46	0.152	5	1	6	0.167	
0	3	3	0.917	16	30	46	0.652	0	6	6	0.958	
2	1	3	0.333	43	2	45	0.044	6	0	6	0.042	
2	1	3	0.333	41	3	44	0.068	6	0	6	0.042	
2	1	3	0.333	38	2	40	0.050	4	0	4	0.063	
 3	1	4	0.250	38	6	44	0.136	5	1	6	0.167	
4	0	4	0.063	34	1	35	0.029	5	1	6	0.167	
 4	0	4	0.063	37	2	39	0.051	5	1	6	0.167	
 0	4	4	0.938	9	32	41	0.780	2	4	6	0.667	
4	0	4	0.063	33	10	43	0.233	4	2	6	0.333	
4	0	4	0.063	33	11	44	0.250	5	1	6	0.167	
 4	0	4	0.063	44	1	45	0.022	5	0	5	0.050	
4	0	4	0.063	35	10	45	0.222	5	0	5	0.050	
 2	2	4	0.500	29	16	45	0.356	4	2	6	0.333	
 4	0	4	0.063	39	3	42	0.071	5	1	6	0.167	
4	0	4	0.063	44	1	45	0.022	6	0	6	0.042	
4	0	4	0.063	35	9	44	0.205	5	1	6	0.167	
3	0	3	0.083	23	22	45	0.489	5	1	6	0.167	
3	0	3	0.083	43	1	44	0.023	6	0	6	0.042	

 Table 3. Incidences of cranial nonmetric traits in the sample of ancient populations from Inner Asia (Continued)

1	2	3	0.667	20	24	44	0.545	3	3	6	0.500
3	0	3	0.083	38	3	41	0.073	6	0	6	0.042
3	0	3	0.083	32	9	41	0.220	5	1	6	0.167
3	0	3	0.083	40	1	41	0.024	6	0	6	0.042
3	0	3	0.083	40	1	41	0.024	6	0	6	0.042
0	3	3	0.917	3	38	41	0.927	0	6	6	0.958
3	0	3	0.083	40	1	41	0.024	6	0	6	0.042
2	1	3	0.333	41	0	41	0.006	6	0	6	0.042
3	0	3	0.083	40	1	41	0.024	6	0	6	0.042
4	0	4	0.063	42	1	43	0.023	6	0	6	0.042
4	0	4	0.063	33	10	43	0.233	6	0	6	0.042
1	3	4	0.750	13	28	41	0.683	1	5	6	0.833
3	1	4	0.250	34	9	43	0.209	4	2	6	0.333
3	0	3	0.083	27	13	40	0.325	3	3	6	0.500
3	0	3	0.083	35	2	37	0.054	4	2	6	0.333
1	3	4	0.750	31	12	43	0.279	2	4	6	0.667
3	0	3	0.083	39	3	42	0.071	5	0	5	0.050
 3	0	3	0.083	39	3	42	0.071	4	1	5	0.200
3	0	3	0.083	36	5	41	0.122	5	0	5	0.050
3	0	3	0.083	35	6	41	0.146	5	0	5	0.050

 Earl	y Iron age,	Tagar, Mi	nusin	Xiong	gnu-Sarmat	, Altai mo	untain	Turkic, Altai Mountain				
Absent	Present	Total	Freq (p)	Absent	Present	Total	Freq (p)	Absent	Present	Total	Freq (p)	
 15	2	17	0.118	4	0	4	0.063	3	0	3	0.083	
 9	8	17	0.471	3	1	4	0.250	3	0	3	0.083	
 6	11	17	0.647	2	2	4	0.500	1	2	3	0.667	
 15	2	17	0.118	4	0	4	0.063	3	0	3	0.083	
 15	2	17	0.118	4	0	4	0.063	2	1	3	0.333	
 16	0	16	0.016	3	1	4	0.250	3	0	3	0.083	
16	1	17	0.059	3	1	4	0.250	2	1	3	0.333	
 14	3	17	0.176	2	2	4	0.500	2	0	2	0.125	
17	0	17	0.015	4	0	4	0.063	2	0	2	0.125	
4	13	17	0.765	4	0	4	0.063	1	2	3	0.667	
 13	4	17	0.235	4	0	4	0.063	1	1	2	0.500	
 14	3	17	0.176	3	1	4	0.250	2	0	2	0.125	
15	2	17	0.118	4	0	4	0.063	2	0	2	0.125	
12	5	17	0.294	3	1	4	0.250	2	0	2	0.125	
 8	9	17	0.529	3	1	4	0.250	1	1	2	0.500	
15	1	16	0.063	3	1	4	0.250	2	0	2	0.125	
 16	1	17	0.059	4	0	4	0.063	2	0	2	0.125	
 15	2	17	0.118	3	1	4	0.250	2	0	2	0.125	
 10	7	17	0.412	2	2	4	0.500	1	2	3	0.667	
17	0	17	0.015	4	0	4	0.063	3	0	3	0.083	

 Table 3. Incidences of cranial nonmetric traits in the sample of ancient populations from Inner Asia (Continued)

 12	5	17	0.294	0	4	4	0.938	1	1	2	0.500
 16	1	17	0.059	4	0	4	0.063	3	0	3	0.083
 10	7	17	0.412	2	2	4	0.500	2	1	3	0.333
 16	1	17	0.059	3	1	4	0.250	3	0	3	0.083
 16	1	17	0.059	4	0	4	0.063	3	0	3	0.083
 4	12	16	0.750	0	4	4	0.938	0	3	3	0.917
 17	0	17	0.015	4	0	4	0.063	3	0	3	0.083
 16	1	17	0.059	4	0	4	0.063	3	0	3	0.083
 12	4	16	0.250	3	1	4	0.250	2	1	3	0.333
 15	2	17	0.118	4	0	4	0.063	3	0	3	0.083
 9	8	17	0.471	3	1	4	0.250	3	0	3	0.083
 2	15	17	0.882	1	3	4	0.750	2	0	2	0.125
 14	3	17	0.176	3	1	4	0.250	2	1	3	0.333
 8	7	15	0.467	3	1	4	0.250	2	0	2	0.125
 16	0	16	0.016	2	2	4	0.500	2	0	2	0.125
 8	8	16	0.500	4	0	4	0.063	3	0	3	0.083
 11	0	11	0.023	4	0	4	0.063	3	0	3	0.083
 11	0	11	0.023	4	0	4	0.063	3	0	3	0.083
 9	1	10	0.100	3	1	4	0.250	2	1	3	0.083
 9	2	11	0.182	4	0	4	0.063	2	1	3	0.333

Early	Mongolian	period-Bu	ryatia	ŀ	Bronze-Inn	er Mongoli	a	Early iron age, Nileke-Xingjian, China				
Absent	Present	Total	Freq (p)	Absent	Present	Total	Freq (p)	Absent	Present	Total	Freq (p)	
19	1	20	0.050	18	1	19	0.053	47	1	48	0.021	
17	3	20	0.150	18	1	19	0.053	32	16	48	0.333	
9	11	20	0.550	9	10	19	0.526	12	36	48	0.750	
16	3	19	0.158	18	1	19	0.053	42	6	48	0.125	
18	1	19	0.053	16	0	16	0.016	36	10	46	0.217	
18	1	19	0.053	13	2	15	0.133	44	2	46	0.043	
13	7	20	0.350	12	7	19	0.368	36	8	44	0.182	
20	0	20	0.013	13	6	19	0.316	41	3	44	0.068	
19	1	20	0.050	18	1	19	0.053	44	1	45	0.022	
3	17	20	0.850	4	13	17	0.765	18	28	46	0.609	
18	2	20	0.100	17	2	19	0.105	41	4	45	0.089	
16	4	20	0.200	13	6	19	0.316	35	10	45	0.222	
19	1	20	0.050	19	0	19	0.013	46	0	46	0.005	
18	2	20	0.100	19	0	19	0.013	41	5	46	0.109	
15	5	20	0.250	10	9	19	0.474	20	27	47	0.574	
18	1	19	0.053	17	2	19	0.105	38	5	43	0.116	
20	0	20	0.013	18	1	19	0.053	46	1	47	0.021	
17	3	20	0.150	13	6	19	0.316	39	7	46	0.152	
6	13	19	0.684	12	5	17	0.294	37	10	47	0.213	
18	0	18	0.014	17	0	17	0.015	47	0	47	0.005	

Table 3. Incidences of cranial nonmetric traits in the sample of ancient populations from Inner Asia (Continued)

7	10	17	0.588	10	5	15	0.333	19	27	46	0.587
18	2	20	0.100	17	1	18	0.056	43	2	45	0.044
 14	6	20	0.300	16	3	19	0.158	39	6	45	0.133
 20	0	20	0.013	18	0	18	0.014	45	0	45	0.006
 18	2	20	0.100	17	1	18	0.056	44	1	45	0.022
3	17	20	0.850	4	13	17	0.765	11	34	45	0.756
 20	0	20	0.013	18	0	18	0.014	42	3	45	0.067
 20	0	20	0.013	18	0	18	0.014	44	1	45	0.022
 12	5	17	0.294	12	2	14	0.143	40	3	43	0.070
 16	1	17	0.059	17	0	17	0.015	42	2	44	0.045
 14	3	17	0.176	12	5	17	0.294	39	7	46	0.152
 2	16	18	0.889	8	10	18	0.556	13	30	43	0.698
 16	3	19	0.158	16	3	19	0.158	35	10	45	0.222
9	8	17	0.471	8	4	12	0.333	18	21	39	0.538
 15	1	16	0.063	10	2	12	0.167	38	1	39	0.026
 14	4	18	0.222	7	10	17	0.588	26	21	47	0.447
16	2	18	0.111	13	3	16	0.016	30	14	44	0.318
 17	1	18	0.056	16	0	16	0.016	41	3	44	0.068
 8	10	18	0.556	16	0	16	0.016	43	1	44	0.023
 15	3	18	0.167	16	0	16	0.016	38	6	44	0.136

War	ring states,	Inner Mor	ngolia		Han, Inner	r Mongolia		Yuan-Inner Mongolia				
Absent	Present	Total	Freq (p)	Absent	Present	Total	Freq (p)	Absent	Present	Total	Freq (p)	
45	2	47	0.043	9	0	9	0.028	48	3	51	0.059	
45	2	47	0.043	8	1	9	0.111	46	5	51	0.098	
15	31	46	0.674	6	3	9	0.333	23	28	51	0.549	
41	1	42	0.024	9	0	9	0.028	41	5	46	0.109	
42	3	45	0.067	8	0	8	0.031	44	3	47	0.064	
29	5	34	0.147	7	1	8	0.125	38	6	44	0.136	
42	10	52	0.192	7	2	9	0.222	40	5	45	0.111	
36	10	46	0.217	5	4	9	0.444	42	6	48	0.125	
45	3	48	0.063	9	0	9	0.028	46	1	47	0.021	
8	32	40	0.800	0	8	8	0.969	7	38	45	0.844	
38	13	51	0.255	6	3	9	0.333	34	14	48	0.292	
44	7	51	0.137	8	1	9	0.111	37	9	46	0.196	
43	3	46	0.065	8	1	9	0.111	49	1	50	0.020	
 44	4	48	0.083	9	0	9	0.028	46	3	49	0.061	
 31	17	48	0.354	3	6	9	0.667	30	19	49	0.388	
31	13	44	0.295	7	2	9	0.222	39	3	42	0.071	
46	3	49	0.061	8	1	9	0.111	48	1	49	0.020	
 37	14	51	0.275	5	4	9	0.444	32	16	48	0.333	
 25	19	44	0.432	6	2	8	0.250	29	17	46	0.370	
 41	1	42	0.024	7	1	8	0.125	44	2	46	0.043	

Table 3. Incidences of cranial nonmetric traits in the sample of ancient populations from Inner Asia (Continued)

1	9	18	37	0.486	3	5	8	0.625	26	14	40	0.350
4	12	4	46	0.087	8	0	8	0.031	46	1	47	0.021
4	12	6	48	0.125	7	1	8	0.125	41	6	47	0.128
4	6	2	48	0.042	7	1	8	0.125	43	3	46	0.065
4	4	3	47	0.064	7	1	8	0.125	46	1	47	0.021
1	9	26	45	0.578	3	5	8	0.625	24	22	46	0.478
4	6	1	47	0.021	9	0	9	0.028	46	1	47	0.021
4	17	0	47	0.005	9	0	9	0.028	44	3	47	0.064
4	10	4	44	0.091	7	1	8	0.125	33	4	37	0.108
4	6	0	46	0.005	8	0	8	0.031	38	14	52	0.269
3	37	9	46	0.196	7	1	8	0.125	33	10	43	0.233
1	3	32	45	0.711	1	7	8	0.875	10	30	40	0.750
4	13	7	50	0.140	9	0	9	0.028	38	4	42	0.095
1	3	25	38	0.658	2	6	8	0.750	20	16	36	0.444
4	10	0	40	0.006	6	2	8	0.250	37	4	41	0.098
1	7	30	47	0.638	1	8	9	0.889	25	16	41	0.390
4	10	5	45	0.111	7	1	8	0.125	38	1	39	0.026
4	12	4	46	0.087	8	0	8	0.031	39	0	39	0.006
4	6	0	46	0.005	8	0	8	0.031	34	6	40	0.150
4	1	5	46	0.109	8	0	8	0.031	39	0	39	0.006

	Xia	nbei		Qidan						
 Absent	Present	Total	Freq (p)	Absent	Present	Total	Freq (p)			
 94	2	96	0.021	29	0	29	0.009			
 84	8	92	0.087	29	0	29	0.009			
17	75	92	0.815	8	21	29	0.724			
74	5	79	0.063	25	2	27	0.074			
80	2	82	0.024	24	5	29	0.172			
 54	12	66	0.182	18	3	21	0.143			
 78	16	94	0.170	25	1	26	0.038			
 64	8	72	0.111	28	1	29	0.034			
 83	1	84	0.012	28	0	28	0.009			
 18	59	77	0.766	6	21	27	0.778			
 71	11	82	0.134	23	5	28	0.179			
 79	5	84	0.060	24	3	27	0.111			
 90	2	92	0.022	29	0	29	0.009			
 81	4	85	0.047	26	3	29	0.103			
 52	33	85	0.388	21	6	27	0.222			
 52	10	62	0.161	23	3	26	0.115			
 80	3	83	0.036	26	1	27	0.037			
 62	13	75	0.173	21	6	27	0.222			
 27	45	72	0.625	13	10	23	0.435			
 68	5	73	0.068	23	0	23	0.011			
 25	43	68	0.632	7	13	20	0.650			
 64	3	67	0.045	22	1	23	0.043			
 68	7	75	0.093	24	2	26	0.077			
 75	0	75	0.003	25	1	26	0.038			
75	1	76	0.013	24	2	26	0.077			
 15	39	54	0.722	12	9	21	0.429			
 72	0	72	0.003	24	1	25	0.040			
73	0	73	0.003	23	2	25	0.080			
 49	3	52	0.058	17	3	20	0.150			
 65	1	66	0.015	21	0	21	0.012			
 58	11	69	0.159	19	4	23	0.174			
 9	51	60	0.850	1	22	23	0.957			
 63	11	74	0.149	20	5	25	0.200			
 27	19	46	0.413	15	3	18	0.167			
 46	5	51	0.098	14	1	15	0.067			

Table 3. (Continued)

59	20	79	0.253	15	9	24	0.375
76	6	82	0.073	14	1	15	0.067
 77	5	82	0.061	14	1	15	0.067
 64	22	86	0.256	10	5	15	0.333
 69	16	85	0.188	14	2	16	0.125

Another discrete trait observed in all population samples is *Palatine torus*. In nine samples out of examined sixteen, this trait is found for more than 40% of skulls. Several samples showed *paracondylar process* as common trait for the population. The highest percentage is found for Han (0.750), Warring States (0.658) and Nileke (0.538).

The rarest discrete traits found in ancient nomads' samples are *Metopism, Inca bone, medial palatine canal, foramen spinosum absent* and all manibular discrete traits. *Metopic suture* is not observed in Neolithic Baikal, Karakob, Xiongnu and Turkic from Altai Mountain, Han from Inner Mongolia and Qidan population samples. *Inca bone* is not observed in Neolithic Baikal, Afanasev from Altai Mountain, Afanasev from Minusin, Karakob, Xiongnu and Tukic from Altai Mountain, and Early Mongolian period samples from Buryatia. This means that all the populations geographically located in Inner Mongolia and Xingjian reveal this trait. *Medial palatine canal* is also very rare among the studied samples. The trait is noticed in Pazyryk sample from Altai mountain and Han (0.125), Yuan (0.043), and Xianbei (0.068) samples from Inner Mongolia.

Many discrete traits show high variability. These are *supraorbital nerve groove*, *zygomatico-facial foramen absent*, *transverse zygomatic suture vestige*, *tympanic dehiscence*, *biasterionic suture*, *foramen spinosum open*.

Results of the study show that wormian bones at different sutures of the skull are distributed with different frequency. The most common wormian bone is at lambdoid suture, as we mentioned above, and asterion. *Sagittal bone, ossicle at lambda, epipteric bone and wormian at squamous suture* are the very rare traits in all the studied samples.

Comparative study of cranial nonmetric traits of archaeological populations from Inner Mongolia, Xinjiang, South Siberia and Buryatia

The comparative analyses were conducted for *Neolithic, Bronze and Early Iron Age, Xiongnu period and Medieval age and contemporary populations* separately.

Neolithic, Bronze and Early Iron Age.

Frequencies of cranial nonmetric traits of six populations from Mongolia, six populations from South Siberia and Baikal Lake region, one population from Xingjian and two populations from Inner Mongolia are used to calculate the mean measure of divergence (MMD).

	Neolit- Mongolia	Bronze- West Mongolia	Bronze- East Mongolia	Early iron- Wooden chamber	Early iron- Stone box	Early iron- no coffin	Neolithic Baikal	Afanasev- Altai Mountain	Afanasev- Minusin	Pazyryk- Altai Mountain	Karakob- Altai Mountain	Tagar, Minusin	Bronze- Inner Mongolia	Early iron, Xingjian	Warring states, Inner Mongolia
Neolit-		-7.27	-23.38	-4.48	10.02	10.70	-1.87	-7.57	-20.40	-6.81	-14.24	-4.43	-9.59	-0.54	-9.86
Mongolia															
Bronze-West			-26.22	15.22	16.61	-9.55	-3.06	22.38	-13.45	-3.21	0.41	17.51	16.69	22.70	40.08
Mongolia			-20.22	13.22	10.01	-9.55	-3.00	22.38	-13.43	-3.21	0.41	17.31	10.09	22.70	40.08
Bronze-East				-22.01	26.70	21.57	-19.76	-11.97	-28.67	-13.33	-14.76	11 69	-10.80	-15.81	12 10
Mongolia	-2.	-22.01	20.70	21.37	-19.70	-11.97	-28.07	-15.55	-14.70	-11.68	-10.80	-13.81	-13.19		
Early iron- Wooden chamber					-3.96	16.84	0.50	3.56	-16.03	24.72	-16.45	25.97	35.65	48.11	113.42
Early iron-						16.08	1.13	-11.23	-20.50	-8.41	-4.61	-1.08	5.47	-6.89	24.94
stone box						10.00	1.15	11.23	20.50	0.41	4.01	1.00	5.17	0.09	24.94
Early iron-no							-9.11	-7.11	-16.82	-8.57	-9.87	-8.22	-13.84	0.71	1.28
coffin							-9.11	-7.11	-10.82	-0.57	-9.87	-0.22	-13.84	0.71	1.20
Neolithic								6.08	-9.67	-0.91	-14.08	5.73	5.43	12.12	11.96
Baikal								0.08	-9.07	-0.91	-14.08	5.75	5.45	12.12	11.90
Afanasevo- Altai Mountain									-22.32	20.05	-15.82	3.05	23.92	10.49	51.41
Afanasevo-										-8.36	-25.04	-10.34	-9.33	-15.12	-3.26
Minusin										-0.30	-23.04	-10.34	-7.00	-13.12	-3.20
Pazyryk-Altai											-16.17	11.09	17.62	31.03	52.95

Table 4. Matrix of mean measure of divergence (MMD) values for Neolithic, Bronze and Early Iron Age populations from Mongolia, South Siberia, Baikal Lake region and Inner Mongolia

Mountain				
Karakob- Altai Mountain	-5.35	-15.69	-13.66	-13.11
Tagar, Minusin		-44.67	-44.09	-46.24
Bronze-Inner Mongolia			30.70	2.28
Early iron, Xingjian				55.12
Warring states, Inner Mongolia				

Multidimensional cluster analyses was applied to the MMD matrix to obtain dendrogram of phylogenetic relationship between populations studied. MMD values for Neolithic, Bronze and Early Iron age populations are given in the Table 5.

Dendrogram of cluster analyses applied to the MMD matrix of cranial nonmetric trait frequencies of ancient nomads is given in the Fig. 3. The multidimensional comparative analyses of cranial nonmetric traits of Neolithic, Bronze and Early Iron age populations from Inner Mongolia, South Siberia and Baikal Lake region reveal three primary clusters.

Within the first cluster there are three subclusters. The first subcluster includes Chandman population with Stone box from Western Mongolia and Tagar population from Kichik kuzur and Malye kopyuny (South Siberia). The next subcluster consists of Chandman population with wooden chamber and Neolithic from Baikal, followed by Afanasev from Altai mountain.

The third subcluster is formed by Neolithic from Mongolia and Nileke population from Xingjian. The first two subclusters form the upper level subcluster and further join to the third subcluster.

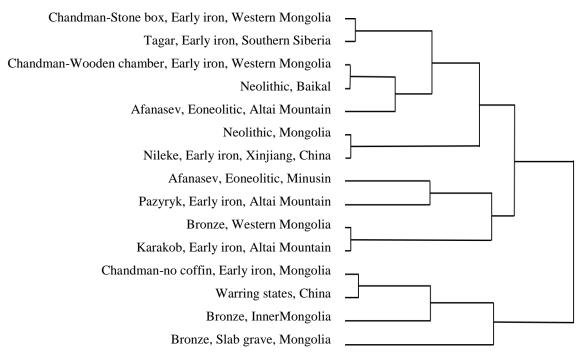


Fig. 2. Dendrogram of relationship of Neolithic, Bronze and Early Iron Age populations from inner Mongolia, South Siberia, Buryatia, Baikal Lake region and Mongolia

The second cluster is separated into two subclusters. The first subcluster is formed by Afanasev population from Minusin basin and Pazyryk from Altai Mountain. The other subcluster includes Bronze Age samples from Western Mongolia and Karakob culture from Altai mountain. Cluster analyses reveal a subcluster in the third cluster. Chandman population with no coffin from western Mongolia shows some affinities to the Warring States population from Inner Mongolia. This subcluster further joins Bronze Age population from Inner Mongolia. Slab grave culture population from Eastern Mongolia from Bronze Age then joins to this subcluster.

Xiongnu period.

MMD values of five populations from Xiongnu and Turkic period of Mongolia, Inner Mongolia and South Siberia are given in the Table applied to cluster analyses.

Table 4. Matrix of mean measure of divergence (MMD) values for Xiongnu, Han,Xianbei and ancient Turkic populations from Mongolia, South Siberia and Inner
Mongolia (China)

	Xiongnu, Mongolia	Xiongnu- Altai mountain	Turkic- Altai mountain	Han, Inner Mongolia	Xianbei, Inner Mongolia
Xiongnu, Mongolia		10.02	5.76	7.32	11.77
Xiongnu, Altai mountain			4.13	3.59	4.21
Turkic,Altai Mountain				2.70	-1.15
Han, Inner Mongolia					4.08
Xianbei, Inner Mongolia					
	Tiongnu, Mongolia at, Altai Mountain				
	ic, Altai Mountain n, Inner Mongolia				

Fig. 3. Dendrogram of relationship of Xiongnu period populations from Inner Mongolia, South Siberia, Baikal Lake region and Mongolia

Xianbei, Inner Mongolia

The dendrogram of cluster analyses show two subclusters. The first subcluster consists of Xiongnu from Mongolia and Xiongnu from Altai. These two populations are separated from the rest of the populations and formed an independent subcluster. The other subcluster consists of Turkic population from Altai and Han population from Inner Mongolia. The Xianbei population from Inner Mongolia is joined to this subcluster and forms the upper level subcluster. Multidimensional analyses show somewhat similar biological features of the Xiongnu from Mongolia and Xiongnu-Sarmats from Altai from

one hand and Turcik people from Altai and Han people from Inner Mongolia from the other hand. Meanwhile the Xianbei was found quite different among the populations compared.

Medieval age and contemporary populations.

Results of the multidimensional cluster analyses show two separate clusters. The first cluster is further divided into two subclusters. The first subcluster consists of Yuan sample from Inner Mongolia, modern Amur population and modern Koreans. The second subcluster is formed by Early Mongolian population from Buryatia and Qidan population from Inner Mongolia. These two subclusters form a separate subcluster.

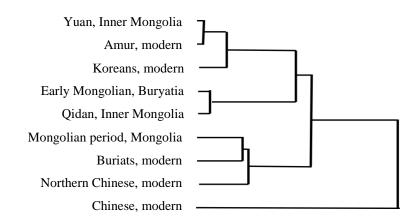


Fig. 4. Dendrogram of relationship of medieval age and contemporary populations from Inner Mongolia, South Siberia, Buryatia and Mongolia

The second cluster consists of a subcluster formed by Mongolian period population from Mongolia and modern Buryats, and Northern Chinese joined to this subcluster. Modern Chinese sample is found the most remoted in regard of biological affinities among the studied populations of the medieval and modern period.

Comparative study of cranial nonmetric traits of ancient and modern populations from Inner Mongolia, Xingjian, South Siberia, Baikal Lake region, Buryatia, Mongolia and Northeast Asia reveal some distinct features of these populations. Results of the study show general differentiation between populations from eastern Mongolia and Inner Mongolia on the one hand, and populations from Xingjian, Altai, South Siberia, Buryatia and western Mongolia on the other hand.

A separate cluster consisting of "Eastern" populations from Bronze and Early Iron Ages, at the same time, include the Chandman population (with no coffin) from western Mongolia. This might show us a probable genetical link of that Chandman population with the nomads from eastern Mongolia or other regions in Inner Mongolia. It is interesting to note, that inspite of the position in the same cluster, the slab grave population from Eastern Mongolia was found rather distinct from the other populations in the cluster: Bronze Age and Warring States populations from Inner Mongolia.

					-				
	Mongolian period, Mongolia	Early Mongolia, Buryatia	Qidan, Inner Mongolia	Yuan, Inner Mongolia	Buryats, modern	Amur, modern	Koreans, modern	Northern Chinese modern	Chinese, modern
Mongolian period, Mongolia		-2.771	-1.555	-2.362	-1.854	-2.018	-2.356	-1.939	-2.350
Early Mongolia, Buryatia			-0.367	-1.334	-0.990	-0.828	-1.937	-0.782	-1.802
Qidan, Inner Mongolia				4.864	6.760	-0.540	9.237	8.213	22.041
Yuan, Inner Mongolia					5.556	-0.086	1.837	5.537	8.633
Buryats, modern						-1.810	6.314	-1.996	4.550
Amur, modern							0.181	-1.708	1.655
Koreans, modern								7.941	11.126
Northern Chinese, modern									6.657
Chinese, modern									

Table 5. Matrix of mean measure of divergence (MMD) values for medieval age and modern populations from Mongolia, Buryatia, Inner Mongolia and China

Cluster analyses show us a picture of very heterogeneous population structure of inhabitants from Southern Siberia, Altai and Western Mongolia during Eoneolithic, Bronze and Early Iron Ages. Afanasev population from Altai is found to a certain extent different from Afanasev from South Siberia; and Pazyryks - very different from Karakobs, and even more different from Tagars. At the same time we can see very close biological affinities: between Chandman (with stone box, Early Iron Age, western Mongolia) and Tagar (Early Iron Age, Southern Siberia); between Chandman (with wooden chamber, Early Iron Age, western Mongolia) and Neolithic Baikal; between Bronze Age populations from western Mongolia and Karakobs from Altai; and, between Neolithic population from central Mongolia and Nileke (Early Iron Age, Xingjian). Close relationship between Neolithic population from central Mongolia and Early Iron Age population from Xingjian; and between Neolithic Baikal, Chandman (with wooden chamber) from western Mongolia, and Afanasev from Altai Mountain may show us their genetical affinities and lead to conclude about biological continuity of those archaeological populations. In other words, results of the study show that Neolithic population from Baikal and central Mongolia played a noticable role in the genetic structure of Chandman (wooden chamber) from western Mongolia and Nileke from Xingjian populations respectively.

Cluster analyses of 2nd BC to 8th AD period samples revealed very close characteristics for Xiongnu populations from Altai and Mongolia, and some similarity between Turkic from Altai and Han from Inner Mongolia. Biological relationship of ancient Turkics from Altai to eastern populations was also observed in the craniofacial morphology study by D.V.Pozdnyakov (2001), where he found some cranial morphology similarities in Turkic from Altai and Xiongnu population from Trans-Baikalia.

Comparative analysis of medieval period and contemporary populations from Baikalia, Buryatia, Mongolia, Inner Mongolia and Northeast Asia show more or less compact picture. Nevertheless, we can observe some tendencies in their biological affinities. Early Mongolians from Buryatia and Qidan from Inner Mongolia are closer to each other and Yuan population from Inner Mongolia and Amur and Korean contemporary populations are closer to each other. On the other hand Mongolian period populations from Mongolia and modern Buryats are very close to each other, and to some extent close to Northern Chinese. Modern Chinese are found very different from the other populations studied.

Based on the results of the comparative cranial nonmerric study of ancient and contemporary populations from Inner Asia, it can be concluded that since the Neolithic time population migration to west had being taken place in the territory of Mongolia, which continued during Bronze and Early Iron Ages and lasted up to medieval period. Unfortunately, the present material does not let us to discuss about the relationship of Mongolian period populations from South Siberia, Altai, Xingjian and western Mongolia, and it requires further investigation including broader both in time and space materials.

ACKNOWLEDGEMENT

We thank the POSCO foundation for their financial support to undertake the anthropological research in China and Russia within the research project "CULTURAL RELATIONSHIP AND MIGRATION OF ANCIENT NOMADS OF EURASIAN STEPPE: ANTHROPOLOGICAL PERSPECTIVE, 2008-2009 and ARC, NUM (Asian Research Center at the National University of Mongolia) for their support in undertaking anthropological research of archaeological population of Mongolia within the research project "EASTERN MONGOLIA: ANTHROPOLOGICAL AND ARCHAEOLOGICAL PERSPECTIVE".

We express our deep gratitude to Dr. Zhu Hong, Director of Anthropological Laboratory, Research Center for Chinese Frontier Archaeology, Jilin University, Dr. Zhang Quan-chao, researcher Wei Dong and Zhan Linhu, Anthropological laboratory, Research Center for Chinese Frontier Archaeology, Jilin University; Dr. Nasanbayar, Department of Anthropology and Sociology, Inner Mongolian University, Dr. T.A.Chikisheva, Head of the anthropological laboratory, Institute of archaeology and Ethnography, Siberian Branch of Russian Academy of Sciences, Dr. B.B.Dashibalov and A.B.Buraev, Institute of Mongolian Studies, Buryat State University for giving us excellent opportunity to study valuable anthropological collection housed at their institutions and for their help and hospitality during our stay at the institutions.

REFERENCE

Alexseev V.P., 1980. Craniology of Mokhe. Paleoanthropology of USSR. M. (in Russian)

- Alexseev V.P., 1984. Brief review in paleoanthropology of Tuva with regard to historical issues. Anthropological research in Tuva. M.: Nauka, p. 6-75 (in Russian)
- Baghashev A.N., 2000. Paleoanthropology of Western Siberia: Steppe-forest region in the early iron age. Novosibirsk. M.: Nauka, p. 374 (in Russian)
- Berry AC, Berry RJ. 1967. Epigenetic variation in the human crinium. J Anat 101:361-379.
- Buraev A.I., 2006. Anthropology of Cis-Baikalia and Trans-Baikalia: early period and medieval age Ulan-Ude (in Russian)
- *Chikisheva T.A.*, 2000a. New data on the anthropological component of Altai population during Neolithic and Bronze age. Archaeology, ethnography and anthropology of Eurasia. Novosibirsk, №1., p. 139-148 (in Russian)
- *Chikisheva T.A.*, 2000b. Anthropology of population from late Bronze age from Western Siberia (interpretation of the paleoanthropological materials from Staryi sad site in the Central Baraba) Archaeology, ethnography and anthropology of Eurasia. Novosibirsk, №2. p. 131-147. (in Russian)
- *Chikisheva T.A.*, 2003. Altai mountain population during Early Iron Age: anthropological viewpoint. In: Altai mountain population from Early Iron Age Ethnic and cultural phenomenon: origin, genesis and historical destiny. Novosibirsk. (in Russian)
- *Chikisheva T.A., Pozdnyakov D.V.,* 2000. Anthropology of Xiongnu-sarmat period population from Altai mountain. Archaeology, ethnography and anthropology of Eurasia. №3.
- Gokhman I.I. 1960. Anthropological characteristics of skulls from Ivolga. Proceedings of the Buryat Research Institute. Siberian Branch of Academy of Sciences USSR. Vol. 3. (in Russian)
- Gokhman I.I. 1967. On the question of anthropological features of ancient herdsmen in Trans-Baikalia. Soviet Ethnography. № 6. (in Russian)
- Debets G.F., 1948. Paleoanthropology of USSR. M. (in Russian)

- *Erdene M.*, 2003. Cranial nonmetric traits of paleoanthropological findings from Eastern Mongolia (Brief information). Scientific Journal of the National University of Mongolia, Series: Anthropology, Archaeology and Ethnology. Vol. 210 (19), p. 11-15.
- *Erdene M.*, 2005a. Cranial non-metric examination of paleoanthropological findings from Eastern Mongolia, 2003. Mongolian Journal of Anthropology, Archaeology and Ethnology, vol. 1.
- *Erdene M.*, 2005b. Ancient population from Eastern Mongolia (Cranial nonmetric examination). "Relics Excavation State and Meaning by the Jinghiz Khan Age. Korea and Eastern Asia (III)" 6th International Conference, 25-26 Nov., 2005. Seoul
- *Erdene M.*, 2006. Cranial nonmetric variation of modern Koreans. Mongolian Journal of Anthropology, Archaeology and Ethnology, vol. 2, No. 2(271), December 2006
- *Erdene M.*, 2007. Cranial nonmetric variation of archaeological and modern populations of Korea and Mongolia. American Journal of Physical Anthropology, April.
- *Erdene M.*, 2008. A cranial nonmetric study of Archaeological and modern populations from Mongolia. Abstracts of the 4th Worldwide conference of the Society for East Asian Archaeology, June 3-5, 2008, Beijing, China. p. 127
- *Finnegan M., Marcsik A.*, 1979. A nonmetric examination of the relationships between osteological remains from Hungary representing populations of Avar period. Acta Biologica Szeged. 25(1-2), 97-118
- Ginzburg V.V., Trofimova T.A., 1972. Paleoanthropology of Central Asia.
- Green R F, Myers Suchey J., 1976. The use of inverse sine transformations in the analysis of nonmetric cranial data. Am J Phys Anthropol 45:61-68
- Hanihara T, Ishida H., 2001a. Os incae: variation in frequency in major human population groups. J Anat. 2001 Feb;198(Pt 2):137-52.
- Hanihara T, Ishida H., 2001b. Frequency variations of discrete cranial traits in major human populations. I. Supernumerary ossicle variations. J Anat. 2001 Jun;198(Pt 6):689-706.
- Hanihara T, Ishida H., 2001c. Frequency variations of discrete cranial traits in major human populations. II. Hypostotic variations. J Anat. 2001 Jun;198(Pt 6):707-25.
- Hanihara T, Ishida H., 2001d. Frequency variations of discrete cranial traits in major human populations. III. Hyperostotic variations. J Anat. 2001 Sep;199(Pt 3):251-72.
- Hanihara T, Ishida H., 2001e. Frequency variations of discrete cranial traits in major human populations. IV. Vessel and nerve related variations. J Anat. 2001 Sep;199(Pt 3):273-87.
- Hanihara T, Ishida H, Dodo Y., 1998. Os zygomaticum bipartitum: frequency distribution in major human populations. J Anat. 1998 May;192 (Pt 4):539-55.
- Hauser G., DeStefano G.F., 1989. Epigenetic variants of the Human Skull. E.Schweizerbartsche Verlagsbuchhandlung, Stuttgart.
- *Ishida H, Dodo Y.*, 1990. Interobserver error in scoring nonmetric cranial traits. J. Anthrop. Soc. Nippon. 98:403-409 (in Japanese)
- *Ishida H., Dodo Y.,* 1992. Differentiation of the Northern Mongoloid: The evidence of cranial nonmetric traits. In: Japanese as a member of the Asian and Pacific populations. International Symposium 4. Sept. 25-29, 1990. Kyoto, Japan. 78-93
- *Ishida H., Dodo Y.,* 1993. Nonmetric cranial variation and the populational affinities of the Pacific peoples. Am. J. Phys. Anthropol. 90: 49-57
- Ishida H., Dodo Y., 1997. Cranial variation in prehistoric human skeletal remains from the Marianas. Am. J. Phys. Anthropol. 104: 399-410
- Ismagulov O., 1970. Ancient population from Kazakhstan from bronze to modern age: paleoanthropological study. Alma-Ata. Kazakhstan Academy of Sciences. p. 239 (in Russian)
- *Kozintsev A.G.*, 1972. Non-metrical traits on crania of 1st millennia BC from Minusinsk hollow. Arch. Anat. Histol. Embryol. Leningrad. 62: 53-59. (in Russian)
- Kruykov M.V., Sofronov M.V., Cheboksarov N.N., 1978. Ancient Chinese: the problem of ethnogenesis. M. (in Russian)
- Levin M.G., 1958. Ethnic anthropology and the problem of the ethnogenesis of Far East population. Proceedings of the Institute of Ethnography. H.ser. Vol. 36. M. (in Russian)

- *Mamonova.N.N.*, 1979. Ancient population of Mongolia paleoanthropological data. Archaeology, anthropology and ethnography of Mongolia, Novosibirsk. (in Russian)
- Movsesjan A.A., Mamonova N.N., Rychkov J.C., 1975. Program and methods of investigation of cranial anomalies. Voprosy anthropologii, 51: 127-150 (in Russian)
- *Ossenberg N S*, 1990. Origins and affinities of the native peoples of Northwestern North America: The evidence of cranial nonmetric traits. In Method and theory for investigating the peopling of the Americas, 79-115.
- Park D K, Lee U Y, Lee J H, Choi B Y, Koh K S, Kim H J, Park S J, Han S H., 2001. Non-metric traits of Korean skulls. Korean J Phys Anthropol. 2001 Jun;14(2):117-126.
- *Popov A.N., Chikisheva T.A., Shpakova E,G.*, 1997. Boisman archaeological culture from Southern Maritime. Novosibirsk (in Russian)
- Pozdnyakov D.V., 2001. Origin of ancient Turkic population in Altai mountain anthropological research. Archaeologiya, etnografiya I anthropologiya Evrazii. Novosibirsk. №3. p. 142-154 (in Russian)
- *Pozdnyakov D.V.*, 2006. Paleoanthropology of medieval age population from southwestern Siberia (2nd half of 1st millennia and 1st half of the 2nd millennia AD) Novosibirsk. (in Russian)
- *Pozdnyakov D.V.*, Komissarov S.A., 2007. Altai-Sayan materials from Chauhu cemetery, Xingjian, China. In: Altai-Sayan region and contiguous territory in ancient time.
- *Sjøvold T*, 1973. The occurrence of minor non-metrical variants in the skeleton and their quantitative treatment for population comparisons. Homo 24:204-233
- Sutter R.C., Mertz L., 2004. Nonmetric cranial trait variation and prehistoric biocultural change in the Azapa valley, Chile., Am. J. Phys. Anthropol. 123: 130-145
- Tumen D., 1977. Paleoanthropology of Western Mongolia. Archaeological study. Vol. 7. fasc. 7.
- Tumen D., 1978. On the anthropological research of Eastern Mongolia. Proceedings of the Institute of General and Experimental Biology. № 2. Ulaanbaatar. (in Russian)
- *Tumen D.*, 1979. Paleoanthropological finding in Khar-Khorin. Archaeological study, Vol. 8. fasc. 10. (in Russian)
- *Tumen D.*, 1985. Ethnogenesis of Mongols paleoanthropological approach. Proceedings of the International Congress of Mongolian study. (in Russian)
- Tumen D., 1987. Anthropological characteristics of Xiongnu, Mongolia. In: Ancient culture of Mongolia. Novosibirsk. (in Russian)
- *Tumen D.*, 1992. Anthropology of modern population from Mongolia. Science Doctor Thesis. M. (in Russian)
- Tumen D., Naran B., 1993. Craniological study of ancient population in Eastern Mongolia. In: Proceeding of Mongolian-Korean Joint Research Project "Eastern Mongolia' Vol. 2. Seoul. South Korea.
- Tumen D., 2002. Paleoanthropological study of Xiongnu from Mongolia. Scientific J. National University of Mongolia. Series: Archaeology, anthropology and Ethnology. Vol. 187(13). Ulaanbaatar, Printing House of NUM.
- Tumen D., 2003. Craniofacial morphology of human remains from ancient burials of Tsuvraa mountain in Uguumur area, Khulenbiur sum, Dornod aimag, Mongolia. Scientific J. National University of Mongolia. Series: Archaeology, anthropology and Ethnology. Vol.210(19). Ulaanbaatar, Printing House of National University of Mongolia. 3-10
- *Tumen D.*, 2007. Ancient populations of Mongolia. Toronto studies in Central and Inner Asia, No.8. University of Toronto. Asian Institute. Canada
- *Turner C.G., Scott G.R.,* 1977. Dentition of Easter Island. In: Graber TM, editor. Orofacial growth and development. Chicago: Mouton Publishers. 229-250
- Wei Dong, Zhang Quan Chao, Chen Shan, 2006. Cranial nonmetric traits of Xianbei population from Wei Jin 16 states. (in Chinese)
- *Wenger*, 1974. Craniomorphological anomalies in the historical populations of the Central Danumbian Basin. Annales Historico-Naturales Musei Nationalis Hungarici. 66: 413-427

- *Zhan Hua*, 2005. The study of nonmetric cranial traits in the Northern Chinese of Ancient times. Jilin University, Changchun (in Chinese)
- Zhang Quan-chao, Cao Jian-en, Zhu Hong, 2006. A Research on the ancient Human Skulls from Jaingjungou Cemetery in Helinge'er County, Inner Mongolia. Acta Anthropologica, Sinica, 25(4) Iin Chinese)
- *Zhu Hong and Znang Quan-chao.*,2007. A Research on the Ancient Human Bones Unearthed from the Jinggouzi Cemetery in Linxi County, Inner Mongolia. Acta anthropologica sinica. 26(2):97-106

ХУРААНГУЙ

М.Эрдэнэ

ДОТООД АЗИЙН ЭРТНИЙ ХҮН АМЫН ГАВЛЫН ХЭМЖИЛТИЙН БУС ШИНЖҮҮДИЙН ХАРЬЦУУЛСАН СУДАЛГАА

Уг өгүүлэлд Өвөр Монгол, Шинжаан, Өмнөд Сибирь, Алтай, Байгал нуур болон Буриадын нутгаас олдсон неолит, хүрэл, төмөр, хүннү, түрэг, кидан, монголын үеийн эртний хүний гавлын ясны хэмжилтийн бус шинжүүдийн харьцуулсан судалгааны үр дүнг толилуулж байна. Олон хэмжээст статистикийн судалгаагаар Хятадын Байлдаант улс, Өвөр Монголын хүрлийн үе, Дорнод Монголын дөрвөлжин булшийн соёлт хүн ам болон Баруун Монголын Чандманий авсгүй оршуулгын олдворууд нэг кластер болж байгаа ба харин Шинжаан, Алтай, Өмнөд Сибирь, баруун Монголын эртний хүний олдворууд маш их хувьсахуйтай, хэд хэдэн кластер үүсгэж байв. Судалгааны дүнгээс харахад одоогийн Монгол, баруун Монголын нутаг дэвсгэр дээр неолитийн үеэс эхлэн баруун зүг чиглэсэн миграц эхэлсэн бөгөөд энэ шилжилт хөдөлгөөн хүрэл, төмрийн түрүү үед улам олон овог аймгийг хамран явагдаж дундад зууныг хүртэл үргэлжилсэн байна.