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Abstract

In this paper, we introduce a multi-stage fine registration technique for registering noisy point clouds. At
each stage, discrete surfaces that overlap each other are simultaneously transformed into a frequency domain
by a fast Fourier transform (FFT) algorithm. In the frequency domain, an adjustable function is used as the
low-pass filter, and then discrete surfaces are reconstructed by an inverse Fourier transform. The iterative
closest point algorithm is used to register the newly generated surfaces and obtain the registration parameters.
We then registered the original point clouds by using these parameters. The next stages are implemented in
the same way as in the above; only the parameters are changed in the filter. After a few stages, our method can
give a better result for the registration of noisy point clouds. We experimented with the proposed method for
registering many types of noisy point clouds such as noisy point clouds with different noise levels or noisy and

sparse point sets.
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1 Introduction

One of the important problems for reconstructing
a three-dimensional (3D) model is the registration
of the point clouds captured by scanning devices.
Because of the complexity of an object, occlusion,
self-occlusion, and the limitation of scanning devices,
multiple scans are typically required to capture all
surfaces of an object. To reconstruct a 3D model, we
need to register the separate point clouds obtained
from different scans into a common coordinate
system.

In the last two decades, many methods have
been developed to register point clouds (1), (2), (3),
(4), (5). Most of the currently existing methods can
be classified into two categories: rough registration
and fine registration. Rough registration algorithms
generate an initial alignment between two point
clouds.

Various techniques are employed to generate
the initial alignment of pairwise registration such
as tracking the position of the scan-ner, placing
additional markers, computing the local and global
features, or using some external information. In

recent years, many local feature-based methods are
commonly used for the initial alignment of point
clouds (6).

For example, Guo et al. (7) proposed a rotational
projection statistics (RoPS)-based feature descriptor,
and Rusu et al. (8) presented point fea-ture histograms
as multidimensional features for registering point
clouds. Recently, Yang et al. (9) proposed a novel
feature descriptor called local feature statistics
histogram, whereas Mellado et al. (10) introduced a
gro-wing least squares-based descriptor for the rough
registration of point clouds.

In the second category, fine registration, the
algorithms obtain the most accurate solution of the
point clouds compared to the solution of those that
have been roughly registered. The most popular fine
registration method in practice is the Iterative Closest
Point (ICP) algorithm (11), (12). The ICP algorithm
computes the rigid transformation that minimizes
the sum of the squared distances between two point
clouds. The process isiterated until some convergence
criteria are met. The ICP algorithm converges well
under some conditions such as point clouds with a



good initial alignment, those with low noise, and those
with similar resolutions. However, in the other cases,
the ICP algorithm convergences to a local minimum
and fails to register the point clouds. To improve the
ICP algorithm, other studies have proposed many
variants and extensions (3), (13), (14), (15).

Fig. 1. Noisy point clouds were obtained by different scanners
from various objects. The magnified sections show polygon
meshes of point clouds.

The existence of noise in point cloud data is a
challenging issue, not only in the ICP algorithm, but
also in feature-based registration algorithms because
some feature-based descriptors such as feature lines
are unstable on noisy point clouds.

In practice, a point cloud captured by scanning
devices includes some noise because of the limitation
of such devices or the physical property of an object.
For example, Fig. 1 shows some noisy point clouds.
The part of a point cloud of a gilt-bronze statue
scanned by a NextEngine 3D laser scanner is shown
in Fig. 1(a). Because of surface shininess, the

laser is reflected too much, causing what is
known as noise. Figure 1(b) shows a point cloud of
a small clay statue obtained by a Matter and Form
3D scanner. The presence of strong noise in the
point cloud, however, can be observed owing to
the limitation of the scanner. In Fig. 1(c), a point
cloud of grassland and herbage captured by a FARO
laser scanner is shown. Because of the roughness
of the land surface, there were some noises in the
point cloud too. Therefore, a robust point cloud
registration method for registering noisy point clouds
is very important in practical applications. Taubin

(21) introduced polyhedral surface fairing based on
signal proces-sing techniques. He defined polyhedral
surface smoothing by generalizing the discrete Fourier
analysis to 2D discrete surface signals and reduced the
surface smoothing problem to low-pass filtering. For
mesh filtering, eigenvectors of the Laplacian operator
are computed explicitly in the spa-tial domain via
convolution. This iterative method, however, requires
a high computational cost. In addition, Pauly and Gross
(22) presented a method for processing point-sampled
objects using a spectral method. In their method, point-
sampled models are split into a number of patches,
each patch is resampled geometrically, and low-pass
filtering is conducted in the frequency domain by
Fourier analysis such as FFT.

Our main contributions are as follows:

* A single-iteration algorithm for removing noise
from point clouds using FFT and low-pass
filtering in the frequency domain;

* A new and robust algorithm for registering noisy
point clouds using adjustable filter functions.

2 Related works

Currently, many robust algorithms have been
proposed for registering noisy point clouds. Some
approaches improved the classical ICP algo-rithms,
whereas others introduced a stable feature descriptor
for noisy point sets.

Segal et al. (15) introduced a generalization
of the ICP algorithm that performs plane-to-plane
matching by combining the “point-to-point” and
“point-to-plane” ICP algorithms into a single
probabilistic framework. Their method is based on
attaching a probabilistic model to the mini-mization
process so that the surface information from both
point clouds can be incorporated easily into the
optimization algorithm. This is a robust approach
for registration. Jian and Vemuri (23) proposed a
similar appro-ach based on a probabilistic modeling
framework for registering noisy point clouds.

Gelfand et al. (13) proposed a point selection
strategy to improve the registration performance
of the ICP algorithm. They presented a method for
detecting uncertainty in pose and minimized this
uncertainty by choosing samples that constrain
potentially unstable transformations. Meanwhile,
Granger etal. (24) formulated point cloud registration
as a maximum likelihood problem and presented a
new variant of the ICP algorithm by applying the
expectation maximization principle.



Fitzgibbon (25) introduced a variant of the ICP
algorithm using matching points to the minimization
strategy. The registration error is directly minimized
using a generalpurpose nonlinear optimization
algorithm.

Recently, Yang et al. (26) proposed a globally
optimal algorithm for registering point clouds under
the L, error metric defined in the ICP algorithm. The
method is based on a branch-and-bound scheme
that searches the entire 3D motion space (SE(3)).
The authors derived novel upper and lower bounds
for the registration error function by exploiting the
special structure of SE(3).

On the other hand, some authors proposed stable
descriptors for registering noisy point clouds. For
example, Zhong (27) introduced a new 3D shape
descriptor called intrinsic shape signature (ISS) to
characterize a local region of a point cloud. ISS uses
the eigenvectors of the covariance matrix of a point
to describe its neighbors. The algorithm gives a good
result on noisy point sets.

Yang et al. (9) proposed a novel feature descriptor
called local feature statistics histogram (LFSH) for
the robust registration of point clouds. By combining
a set of low-dimensional geometric features, LFSH
incurs a minimal loss in the local shape descriptions,
but it is robust to noisy and varying point cloud
resolutions. Guo et al. (7) proposed a RoPS-based
feature descriptor that is based on an accurate
and robust algorithm for registering point clouds.
Boughorbel et al. (28) presented a robust registration
method based on Gaussian fields. They presented a
Gaussian field criterion that consists of a Gaussian
mixture, depending on the distance and point
attributes such as the local shape descriptors. Later,
Boughorbel et al. (29) extended the work in (28) by
using a continuously differentiable energy function.
The method (29) shows robustness in the presence
of strong noise.

Amamra et al. (30) presented a recursive robust
filtering method for feature-based point cloud
registration. The algorithm is based on a recur-sive
optimal state estimation. The registration problem
was fitted to the Kalman filter scheme, and it was
robust to uncertainties caused by noisy feature
localization. Deng et al. (31) proposed a local feature

descriptor-based point pair local topology. The
topology descriptor is defined by a histogram that
is constructed using the weighting of the distance
measures and angle measures based on a local point
pair.

Sandhu et al. (32) presented a particle filtering
approach for registering point clouds. In their work,
stochastic motion dynamics are introduced to widen
the narrow band of convergence which is used to
tackle the registration task. The method works well
on point clouds with poor initialization and noise
without any geometric assumption on the point
cloud density.

3 Two-dimensional discrete Fourier transform

Let f{x; y) be a discrete function defined on N x M
point sets. The discrete Fourier transform (DFT)
F(u; v) of a function f{x; y) is given by the following

equation:
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Similarly, f(x, y) is obtained by the inverse
discrete Fourier transform (IDFT) for the given
F(u, v) by the following equation:
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The DFT of a discrete surface or its IDFT can be
accelerated by a FFT. A Fourier transform converts
a signal from its original domain (often a time or
space domain) to a representation in the frequency
domain. The Fourier spectrum |F(u, v)| is defined as

| F(u,v) |=[R* (u,v) + 1 (u, )], 3)

where R(u, v) and I(u, v) are the real and imaginary
parts of F(u, v), respectively (33). The Fourier
spectrum reveals the frequency components in the
input data.



In the frequency domain, the high-frequency
components can be eliminated by a low-pass
filtering operation as follows:

W(u,v) = |F(u,v)|H(u,v), 4)

where H(u, v) is a low-pass filter function and
W(u, v) is the power spectrum where the high-
frequency components are eliminated. In signal
processing, there are many low-pass filter functions
such as Butterworth filter, Chebyshev filter and
Gaussian filter.

A frequency-domain filtering operation can be
represented in a spatial domain as follows:

w(x,y) = flz,y) = hz,y), (5)

where Z(x, y) is the IDFT of H(u, v), w(x, y) is a
smoothing function, and * is a convolution operator.

4 Noisy point cloud registration

The input for our algorithm is two partially
overlapped noisy 3D point clouds, P = {p,c R’} and
O = {q,c R}, obtained from a scanning device. Let
P, and Q, be point sets on the overlapped area of
the point clouds, and let P and Q be their explicit
discrete surfaces, respectively.
Let aP and c_ig be the average distance between points
in point sets P, and Q, respectively.

(a) (b)
Fig. 2. (a) Two partially overlapped noisy point clouds and
the minimum bounding rectangle; (b) 2D grid generation.

4.1 Point cloud resampling

To use a discrete Fourier transform, we resample
point sets P, and Q,. The first stage of resampling
is to construct a local coordinate system for point
sets P, and Q,. Therefore, the covariance matrix C
is defined from the union of two point sets, P/ and
QOl,and denotedby PI Q. Ifvj,(j=1,..., K)are
points of the set P, Q,, then C can be defined as
K

S v =0T (vi =), (6)
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where V is the average of the set,v = V;.
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Let A1, A2, and A3 (A, <A, <],) be the eigenvalues of
matrix C, and let e, e,, and e, be the corresponding
eigenvectors. In principal component analysis,
the eigenvector el to the smallest eigenvalue Al
estimates the normal vector of point v (?) and a local
coordinate system (OXY Z) can be constructed by the
eigenvectors e, e, and e,. The OZ axis is selected
along the normal vector of point v.

In this coordinate system, a minimum bounding
rectangle of the overlapping area of surfaces P and
Q is established on the OXY plane. For example, Fig.
2(a) shows two noisy point clouds obtained from the
face of a statue. Both point clouds contained strong
noise and partially overlapped surfaces produced
by the rough registration. The minimum bounding
rectangle of the overlapping area is drawn by green
lines.

Consequently, the bounding box is translated into
the first quadran of the coordinate plane OXY and a
uniform 2D grid is constructed on
the bounding rectangle. The grid size N x N} ~and
grid step size are chosen to be smaller than min
(dP , dQ). In the constructed grid, the discrete
surfaces P and Q are resampled into grid spaces. For
example, the resampling values P (x, y ) (i =0, 1,
.N—-1Lj=01, ..., Ny —1) of point cloud P are
computed by the following rules:

* For each grid at point (x,, Y, ), only four neighbors
are selected from point cloud P as

= {pi‘mm(d({rzyj) (Ipieyp,)))n Ipy < z; and

yp, < y;,vp € P, (7a)
2 = {p|min(d((z;, y;), (zp,, yp,))), xp, = =i and

Yo < ¥5, 9Py € Pl (7b)
pa3 = {pg|min(d((z:, y;), (zp, Yp,))); 2p, < x; and

Yp, > ¥, Vp € Pl (7c)
pa = {pi|min(d((z:, y;), (zp,, yp,))), xp, = z; and

up, = Y, Vp € P, (7d)

where d((x; y,); (x,, . ¥, )) is the distance between
points (x, y,) and point (x,, ; y,, ), and x,, and y,, are
respectively the first and the second coordinate of
point P, By Eq. (7), the four closest points to the grid

point (x,; Y, ) are found.

¢ The value of fp (x; Y, ) is computed

from points P; P, P, and P, by inverse
distance weighting interpolation as
4
wi zp;
fp(whyj):Zﬁ- (8)
T

I=1 r=1
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Fig. 3. (a) Point cloud with strong noise and an image of the original model; (b) Graph of the Gaussian function
and Fourier spectrum of the point cloud; (c¢) The filtered Fourier spectra and the corresponding surfaces at various

parameters

where s
il
wy = )
d( (i, y3), (xpy ypy))

is the inverse distance weighting function, and
75, is the third coordinate of point P .

The resampling values fQ(xi; Y, )@= N~
1,j=01,..., Ny — 1) of point cloud Q are computed
in the same way as fP (x,; Y, ) by Egs. (7)-(9) on the
same grid. Figure 2(b) shows the uniform 2D grid
constructed in the bounding rectangle.

4.2 Noise removal in the frequency domain

Two resampled surfaces, fP(x; y, Jand fO(x; y),
on the uniform grid can be transformed into the
frequency domain by Eq. (1). To take advantage of
FFT, we should make grid size N, and N a power of
2. The Fourier spectra of FP (u, v ) and FO(u, v, )
are computed using Eq.(3), respectlvely

To eliminate the high-frequency components
of |FP (u, vi)| and |FQ(u, v_,.)|, adjustable window
funtion that is zero-valued outside of some chosen
interval can be used. In typical applications, the
window functions used are non-negative, smooth,
bell-shaped surfaces such as Gaussian function,
generalized normal, Dolph-Chebyshev function
and Tukey function. In our research, we selected a
Gaussian window function as a filter:

w2 02
- i+ J
Glug,vj) =e (Eg ;5)7 (10)

where ¢, and o, are the parameters of the Gaussian
function. By changing the o, and ¢ parameters, we
can change the shape of the function; in order words,
a filter function can be adjusted by the parameters.

A low-pass filter function in the frequency domain is
formulated as follows:

o Af [ F (g, )| € Glug,vg)
H(ug,n5) =

if |F(ug,vg)] > Gug, vj).

The high-frequency components of the Fourier
spectrum are removed using this filter function in
Eq. (4).

In the next step, a smooth discrete surface is
constructed easily by transforming the filtered
frequency data by IFFT in Eq. (2). In Fig. 3(a), a
noisy point cloud bounded by the minimum rectangle
and an image of the model constructed by a noiseless
point cloud are shown. Figure 3(b) shows a Gaussian
function for the filtering and the normalized Fourier
spectrum of the noisy point cloud, whereas Fig. 3(c)
shows the constructed smooth surfaces with the
corresponding filtered spectra at various parameters
of ¢ in a Gaussian function.

Once the smooth surfaces fP(x Yy, ) and fQ(x Yy )i
=0, 1,. -1,j=01,. y— ]) are constructed
on the gnd the surface pomts are pruned on the
basis of the distance-based criteria. We formulated
the criteria as follows: if the surface point ]’P(xl,, Yy )
defined on the grid satisfies the following condition,
then we assume that the point fp(x, »,) belongs to the
overlapping surface P,

(11)

min(d(fp(x;, i) Pyl =1,2,3/4) < 171.-i71((ip.(ZQ) (12)

where, dO??(x Y, ),P) is the distance between points
ﬁP(x y,), P is defined by Eq. (7), and min(d, ) is the
average dlstance of input point clouds P and Q

4.3 Point cloud registration

We can obtain two smooth surfaces, P and Q,



(b) ©
Fig. 4. (a) Noisy point cloud; (b) smoothed surface on the
grid; (c) result after pruning the points.

(@)

overlapping each other by applying the techniques
described in the previous sections. These point
clouds can be registered by using the ICP algorithm
(12), which uses the point-to-plane error metric:

E=3) [(Rp;+T —q,) n]° (13)

where R is a rotation matrix, T is a transformation
matrix, and (p, ¢) are point pairs with normal n..
By implementing the algorithm in Eq. (13), we can
obtain six parameters including the operations of the
rotation and the translation.

In the final step, the original noisy point clouds
can be registered by the parameters obtained by the
ICP algorithm. However, depending on the noise
level and the rough registration of the point clouds,
the proposed technique will require a multi-stage
implementation. For each stage, the same techniques
such as resampling of point clouds, filtering of
noise, and registeration of a point cloud by the ICP
algorithm are implemented. The only deference
between the stages is the parameter value for the
filtering function. For example, Fig. 5 shows the
process for registering noisy point clouds. Figure
5(a) shows a point cloud with a strong noise and its
initial alignments. For the registration of these point
clouds, three stages are required. Figure 5(b)-(d)
show point clouds whose noises were removed by
the different parameter values of a Gaussian function
in Eq. (10) and the registration result of noisy point
clouds in each step The parameter values such as
o,=0,=0020, =0.05and o, =01
are deﬁned by the user In the first stage all noises
and some small features are removed from the point
clouds. Thus, the result of the stage is an improved
rough alignment of the point clouds. Starting from
the second and the third stages, the fine registration
is performed between point clouds with certain
features and a small level of noise.

A number of stages of the proposed method depend
on the noise level of the point clouds and on the
complexity of the original model. The registration
process will continue until the average variation of
the point clouds is stabilized. For the noisy point
clouds, a distance-based registration

Gut = 04y = 0.02 v = 0.05

(a)

Fig.5.(a) Orlgmal noisy point cloud and rough reglstratlon
of point clouds; (b)-(d) resampled surfaces with different
parameter values of and point clouds registration results
at each stage.

error is not efficient. Therefore, we considered an
error measurement based on the average variation
value of the registered point clouds. For the
computation of the variation value for each point in
the point cloud P, U Q,, the covariance matrix C is
defined from each point and its closest K neighborsby
Eq. (6) and the variation of point p is defined by the
following function proposed by Pauly et al. (? ):
Ao

op)=——""—,
») Ao+ A1+ A2

where Ao, A1, and A» are the eigenvalues of the
covariance matrix C with Ao <A1 <Aa.
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Fig. 6. (a) Average variation; (b) average distance at each
step of the proposed method.Fig 6.jpg



Figure 6 shows graphs of the average variation value
of the point cloud P, U Q, and the average nearest
distance value between point clouds P; and Q; at
each step of the proposed method’s process shown
in Fig. 5.

The process for registering noisy point clouds is
summarized in Algorithm
1.

Algorithm 1. Algorithm for registering noisy point
clouds,

Input: Noisy point clouds P and O
Input: o, parameters of the Gaussian function

do
define overlapping areas P:and Q:
get next o,
construct the coordinate system OXY Z = for
P U Q,
define the uniform grid with a size of N x N
for each x, and Y,
7. compute the resampling values /P (x, Yy )

and fO(x, ¥,)
8. end for

compute I F T(fr (x, Y, )) and F F T(fo (xi,y,))
. filter |FP (u, v)| and |FQ (u, v)| by using a Gaussian
function
compute F'F T(fp (ul.,vj)) and IF F T(FQ(ui, vj))
//fp (x, Y, ) and fo(x, Y, ) are obtained
implement the ICP algorithm
on Joo(x, v ) and Jot, v )
// 6 parameters for registration are obtained

13: register point clouds P and Q by
parameters
14. while average variation not stabilized

.

B =

AN

11.

12.

13.

Fig. 7. (a) Result of the proposed algorithm; (b) failed
registration of the point clouds by the ICP algorithm.

5 Experimental results

We applied the proposed method for registering
different types of point clouds such as point clouds
with strong noise or noisy point clouds with different
resolutions or different amounts of noise. The
experiments were performed on a machine with a
2.8-GHz Intel Xeon E5-1603 processor and 8GB of
RAM.

In our experiment, the implementation was done
for different types of point clouds such as those with

9

noise owing to the limitation of scanning devices or
to the physical property of the objects. For the others,
noises were created by adding Gaussian noise with
zero mean and a variance of a certain percentage of
the average distance of the point clouds.

For example, approximately 90% of noise
was added to the point clouds in the experiment
shown in Fig. 3. Rough registration was manually
implemented by selecting the feature points. In the
first experiment, we registered the point clouds of
an object with a round shape. This type of object is
good for showing the robustness of the method. To
the point clouds, approximately 85% of noise was
added. The proposed method requires two stages for
registering point clouds. The final result is shown
in Fig. 7(a). Figure 7(b) shows the result of the ICP
algorithm that failed to register these point clouds.

(a) (b)

Fig. 8. (a) Result of the proposed algorithm for registering
noisy point clouds with different densities; (b) the
magnified sections of a point cloud with different densities

Fig. 9. (a) Result of the proposed algorithm for registering
noisy point clouds with different amounts of noise; (b) the
magnified sections show polygon meshes of point clouds
with different noise levels.

In the next experiment, the implementation was
done for the point clouds of a gilt-bronze statue (see
Fig. 1(a)) scanned by a NextEngine 3D laser scanner.



Because of the surface properties of the shininess,
there were noises in the point clouds. In addition,
the point clouds captured by different modes of the
scanner such as macro and wide range were used
in the experiment. The density of the point clouds
obtained by the macro-range mode was about five
times higher than that of the point clouds obtained
by the wide-range mode. Figure 8 shows the result
of the proposed method on noisy point clouds with
different densities.

In the last experiment, we registered the point
clouds of a sandy terrain captured by a Kinect
sensor. Both point clouds included some noise
because of terrain roughness. For the experiment, we
added 30% and 80% of noise to these point clouds,
respectively. The registration result is shown in Fig.
9. The numerical results of our proposed algorithm
are given in Table 1.

6 Conclusions and future work

In this paper, we presented a novel method
for registering noisy point clouds. The main
contributions of our research are as follows: (a) a
singleiteration method for eliminating noise from
point clouds using FFT and low-pass filtering in
the frequency domain and (b) a proposed new and
robust algorithm for registering noisy point clouds.

To remove noise in point clouds, we resampled

overlapped point clouds and transferred them to the
frequency domain by FFT. The Fourier spectrum of
the point clouds was filtered by a Gaussian function.
At each stage of the method, we chose different
parameters of the Gaussian function. By registering
the smoothed point clouds with the ICP algorithm,
we obtained the registration parameters for the
original point clouds. In addition, we suggested an
error measurement based on the average variation
value of the registered point clouds. For noisy point
clouds, this measurement was more efficient than the
error measurement based on a distance.
In addition, the proposed method requires that the
overlapped area of the point clouds should be an
explicit discrete surface because of the DFT. This
is one of the limitations of the proposed method.
Another limitation of the method is that, if the
number of points of the overlapped area is large, such
as several millions of points, then the computation
time of the method will be high because of the size
of the FFT.

We experimented with our method on many
different types of noisy point clouds, such as point
clouds with strong noise, point clouds with different
amounts of noise and noisy point clouds with
different densities.
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The proposed method showed robustness in
the presence of strong noise. In the experiment,
parameters of Gaussian window function are selected
by user. The parameter values were depending on
level of the noise and surface roughness.

In the future, research on automatic and optimal
selection of the parameter values of the window
function is required for improving application of the
proposed method.
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Xypaanryii

by 3HAXYY eryymnang IyyruaHT LTOH ererIIuir OypTraX OJIOH ajxXaMT aprbll TaHWILYY/IHA. Anxam
OYpT JaBXIICaH JUCKPET TagapryyHYYIbIT HAr3H 33par Oypberniin xypaan xysuprait (FFT)-aap gapramvkuitn
OTTOPryH pyy XyBuprana. JlaBTaMKuiiH OrTOPryii ererceH pyHKIMHH TyclaMKTailraap HaM JaBTaMKy yIbIT
LIYYH aBdY, yiIMaap ypByy QypberuifH XyBupraintaap IUCKpeT rajapryyr AaxuH OailiryymHa. DHAXYY AaxvH
OaifryyncaH ragapryyr xamruiiH oiip tpruiiH urepamu (ICP)-uiiH aprblH TycnmamskTail OypTraxk, Xaprai3ax
OYPTIUIMIH MapaMeTpyYAHHT TOTTOOCOH. DAr3dp HapaMeTpYYIHWHT alluriaH ererCoH HIYYyTrHaHT IPIH
erer;uIMir OypTracoH. JlapaarniiH anxaMyyabIr A39pXTOU aJuil apraap XdpdIXKYYJICOH 0eree] 30BXoH HaMm
JaBTAM)KUHUT LIYYX LIYYATYYPUHH HapaMeTpYyIur eepuusiceH. DHIXYY IPOLECCHHT L0OH ajxaM JaBTaH
XIPIrKYYJICHUH fapaa OunHuUM 6010BCpyysIcaH apra NIyyrHaHT L3T9H ererIMATr OYpTIoH aBaxaj Uilyy cailH
YP AYH erceH. bum a33px apreir CHHpAST LPIIH ereraed, NIyyrHaHbsl TYBUIMH eep eep Oaiix oJ0H TepiuilH
I[3I3H OrerINIr OYpTraXo TypIIMK Y3COH.

Tyaxyyp yr: WyyruanT uaraH erernen, @ypberuiiH XypaaH XyBAPrailT, AUCKPET ragapryy

12



