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Abstract

closest point algorithm is used to register the newly generated surfaces and obtain the registration parameters. 
We then registered the original point clouds by using these parameters. The next stages are implemented in 

give a better result for the registration of noisy point  clouds. We experimented with the proposed method for 
registering many types of noisy point clouds such as noisy point clouds with different noise levels or noisy and 
sparse point sets.
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1 Introduction

One of the important problems for reconstructing 
a three-dimensional (3D) model is the registration 
of the point clouds captured by scanning devices. 
Because of the complexity of an object, occlusion, 
self-occlusion, and the limitation of scanning devices, 

surfaces of an object. To reconstruct a 3D model, we 
need to register the separate point clouds obtained 
from different scans into a common coordinate 
system.

In the last two decades, many methods have 
been developed to register point clouds (1), (2), (3), 
(4), (5). Most of the currently existing methods can 

generate an initial alignment between two point 
clouds.

the initial alignment of pairwise registration such 
as tracking the position of the scan-ner, placing 
additional markers, computing the local and global 
features, or using some external information. In 

recent years, many local feature-based methods are 
commonly used for the initial alignment of point 
clouds (6). 

For example, Guo et al. (7) proposed a rotational 
projection statistics (RoPS)-based feature descriptor, 
and Rusu et al. (8) presented point fea-ture histograms 
as multidimensional features for registering point 
clouds. Recently, Yang et al. (9) proposed a novel 
feature descriptor called local feature statistics 
histogram, whereas Mellado et al. (10) introduced a 

registration of point clouds.

algorithms obtain the most accurate solution of the 
point clouds compared to the solution of those that 

registration method in practice is the Iterative Closest 
Point (ICP) algorithm (11), (12). The ICP algorithm 
computes the rigid transformation that minimizes 

clouds. The process isiterated until some convergence 
criteria are met. The ICP algorithm converges well 
under some conditions such as point clouds with a 
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good initial alignment, those with low noise, and those 
with similar resolutions. However, in the other cases, 
the ICP algorithm convergences to a local minimum 
and fails to register the point clouds. To improve the 
ICP algorithm, other studies have proposed many 
variants and extensions (3), (13), (14), (15).

Fig. 1. Noisy point clouds were obtained by different scanners 

meshes of point clouds.

The existence of noise in point cloud data is a 
challenging issue, not only in the ICP algorithm, but 
also in feature-based registration algorithms because 
some feature-based descriptors such as feature lines 
are unstable on noisy point clouds.

In practice, a point cloud captured by scanning 
devices includes some noise because of the limitation 
of such devices or the physical property of an object. 
For example, Fig. 1 shows some noisy point clouds. 
The part of a point cloud of a gilt-bronze statue 
scanned by a NextEngine 3D laser scanner is shown 
in Fig. 1(a). Because of surface shininess, the 

known as noise. Figure 1(b) shows a point cloud of 
a small clay statue obtained by a Matter and Form 
3D scanner. The presence of strong noise in the 
point cloud, however, can be observed owing to 
the limitation of the scanner. In Fig. 1(c), a point 
cloud of grassland and herbage captured by a FARO 
laser scanner is shown. Because of the roughness 
of the land surface, there were some noises in the 
point cloud too. Therefore, a robust point cloud 
registration method for registering noisy point clouds 
is very important in practical applications. Taubin 

(21) introduced polyhedral surface fairing based on 

surface smoothing by generalizing the discrete Fourier 
analysis to 2D discrete surface signals and reduced the 

are computed explicitly in the spa-tial domain via 

a high computational cost. In addition, Pauly and Gross 
(22) presented a method for processing point-sampled 
objects using a spectral method. In their method, point-
sampled models are split into a number of patches, 
each patch is resampled geometrically, and low-pass 

Fourier analysis such as FFT.

Our main contributions are as follows:

• A single-iteration algorithm for removing noise 
from point clouds using FFT and low-pass 

• A new and robust algorithm for registering noisy 

2 Related works

Currently, many robust algorithms have been 
proposed for registering noisy point clouds. Some 
approaches improved the classical ICP algo-rithms, 
whereas others introduced a stable feature descriptor 
for noisy point sets. 

Segal et al. (15) introduced a generalization 
of the ICP algorithm that performs plane-to-plane 
matching by combining the “point-to-point” and 
“point-to-plane” ICP algorithms into a single 
probabilistic framework. Their method is based on 
attaching a probabilistic model to the mini-mization 
process so that the surface information from both 
point clouds can be incorporated easily into the 
optimization algorithm. This is a robust approach 
for registration. Jian and Vemuri (23) proposed a 
similar appro-ach based on a probabilistic modeling 
framework for registering noisy point clouds. 

Gelfand et al. (13) proposed a point selection 
strategy to improve the registration performance 
of the ICP algorithm. They presented a method for 
detecting uncertainty in pose and minimized this 
uncertainty by choosing samples that constrain 
potentially unstable transformations. Meanwhile, 
Granger et al. (24) formulated point cloud registration 
as a maximum likelihood problem and presented a 
new variant of the ICP algorithm by applying the 
expectation maximization principle.
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descriptor-based point pair local topology. The 

is constructed using the weighting of the distance 
measures and angle measures based on a local point 
pair.

approach for registering point clouds. In their work, 
stochastic motion dynamics are introduced to widen 
the narrow band of convergence which is used to 
tackle the registration task. The method works well 
on point clouds with poor initialization and noise 
without any geometric assumption on the point 
cloud density.

3 Two-dimensional discrete  Fourier  transform

Let f(x; y N  M 
point sets. The discrete Fourier transform (DFT) 
F(u; v) of a function f(x; y) is given by the following 

(1)
1 1 2 ( )
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Similarly, f(x, y) is obtained by the inverse 
discrete Fourier transform (IDFT) for the given 
F(u, v

1 1 2 ( )
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The DFT of a discrete surface or its IDFT can be 
accelerated by a FFT. A Fourier transform converts 
a signal from its original domain (often a time or 

domain. The Fourier spectrum |F(u, v

(3)2 2 1/2| ( , ) | [ ( , ) ( , )] ,F u v R u v I u v

where R(u, v) and I(u, v) are the real and imaginary 
parts of F(u, v), respectively (33). The Fourier 

input data.

Fitzgibbon (25) introduced a variant of the ICP 
algorithm using matching points to the minimization 
strategy. The registration error is directly minimized 
using a generalpurpose nonlinear optimization 
algorithm.

Recently, Yang et al. (26) proposed a globally 
optimal algorithm for registering point clouds under 
the L

2

method is based on a branch-and-bound scheme 
that searches the entire 3D motion space (SE(3)). 
The authors derived novel upper and lower bounds 
for the registration error function by exploiting the 
special structure of SE(3).

On the other hand, some authors proposed stable 
descriptors for registering noisy point clouds. For 
example, Zhong (27) introduced a new 3D shape 
descriptor called intrinsic shape signature (ISS) to 
characterize a local region of a point cloud. ISS uses 
the eigenvectors of the covariance matrix of a point 
to describe its neighbors. The algorithm gives a good 
result on noisy point sets.

Yang et al. (9) proposed a novel feature descriptor 
called local feature statistics histogram (LFSH) for 
the robust registration of point clouds. By combining 
a set of low-dimensional geometric features, LFSH 
incurs a minimal loss in the local shape descriptions, 
but it is robust to noisy and varying point cloud 
resolutions. Guo et al. (7) proposed a RoPS-based 
feature descriptor that is based on an accurate 
and robust algorithm for registering point clouds. 
Boughorbel et al. (28) presented a robust registration 

mixture, depending on the distance and point 
attributes such as the local shape descriptors. Later, 
Boughorbel et al. (29) extended the work in (28) by 
using a continuously differentiable energy function. 
The method (29) shows robustness in the presence 
of strong noise.

Amamra et al. (30) presented a recursive robust 

registration. The algorithm is based on a recur-sive 
optimal state estimation. The registration problem 

robust to uncertainties caused by noisy feature 
localization. Deng et al. (31) proposed a local feature 
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 In the frequency domain, the high-frequency 
components can be eliminated by a low-pass 

 where H(u, v)  
W(u, v) is the power spectrum where the high-
frequency components are eliminated. In signal 

represented in a spatial domain as follows:

where h(x, y) is the IDFT of H(u, v), w(x, y) is a 
smoothing function, and * is a convolution operator.     

4 Noisy point cloud registration
 The input for our algorithm is two partially 
overlapped noisy 3D point clouds, P = {p

l
 R3} and 

Q = {q
i

 R3}, obtained from a scanning device. Let 
P

1
 and Q

1
 be point sets on the overlapped area of 

the point clouds, and let P and Q be their explicit 
discrete surfaces, respectively.
Let d

P
 and d

Q
 be the average distance between points 

in point sets P
1
 and Q

1
, respectively.

Fig. 2. (a) Two partially overlapped noisy point clouds and 
the minimum bounding rectangle; (b) 2D grid generation.

 To use a discrete Fourier transform, we resample 
point sets P

1
 and Q

1

is to construct a local coordinate system for point 
sets P

1
 and Q

1
. Therefore, the covariance matrix C 

P1 and 
Q1, and denoted by P1    Q

1
. If vj , (j = 1, . . . , K) are 

points of the set P
1

Q
1
, then C

where  is the average of the set,     

1 2 3
) be the eigenvalues of 

matrix C, and let e
1 2

, and e
3
 be the corresponding 

eigenvectors. In principal component analysis, 

estimates the normal vector of point v (?) and a local 
coordinate system (OXY Z) can be constructed by the 
eigenvectors e

1 2 3
. The OZ axis is selected 

along the normal vector of point v.
 In this coordinate system, a minimum bounding 
rectangle of the overlapping area of surfaces P and 
Q is established on the OXY plane. For example, Fig. 
2(a) shows two noisy point clouds obtained from the 
face of a statue. Both point clouds contained strong 
noise and partially overlapped surfaces produced 
by the rough registration. The minimum bounding 
rectangle of the overlapping area is drawn by green 
lines.
 Consequently, the bounding box is translated into 

uniform 2D grid is constructed on
the bounding rectangle. The grid size N

x
 × N

y
 and 

grid step size are chosen to be smaller than min 
(dP , dQ). In the constructed grid, the discrete 
surfaces P and Q are resampled into grid spaces. For 
example, the resampling values fP (x

i
, y

j
 ) (i = 0, 1, 

. . . N
x y

 of point cloud P are 
computed by the following rules:
  • For each grid at point (x

i 
, y

j
 ), only four neighbors 

are selected from point cloud P as 
 

where d((x
i
; y

j
 ); (x

Pl
 ; y

Pl
 )) is the distance between 

points (x
i
; y

j
 ) and point (x

Pl
 ; y

Pl
 ), and x

Pl
 and y

Pl 
are 

point 
l
. By Eq. (7), the four closest points to the grid 

point (x
i
; y

j
 ) are found.

• The value of f  (x
i
; y

j
 ) is computed 

from points 
1
; 

2
; 

3
, and 

4
 by inverse 

distance weighting interpolation as 
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where                                                        ,

is the inverse distance weighting function, and 
z

P1
 is the third coordinate of point 

1
.

 The resampling values f
Q
(x

i
; y

j
 ) (i = 0, 1, . . . N

x

1, j =0, 1, . . . , N
y

 of point cloud Q are computed 
in the same way as f  (x

i
; y

j
 ) by Eqs. (7)-(9) on the 

same grid. Figure 2(b) shows the uniform 2D grid 
constructed in the bounding rectangle.

 Two resampled surfaces, fP(x
i
; y

j
 )and fQ(x

i
; y

j
), 

on the uniform grid can be transformed into the 
frequency domain by Eq. (1). To take advantage of 
FFT, we should make grid size N

x
 and N

y
 a power of 

2. The Fourier spectra of FP (u
i
, v

j
 ) and FQ(u

i
, v

j
 ) 

are computed using Eq.(3), respectively.
 To eliminate the high-frequency components 
of |FP (u

i
, v

j
)| and |FQ(u

i
, v

j
)|, adjustable window 

funtion that is zero-valued outside of some chosen 
interval can be used. In typical applications, the 
window functions used are non-negative, smooth, 
bell-shaped surfaces such as Gaussian function, 
generalized normal, Dolph-Chebyshev function 
and Tukey function. In our research, we selected a 

where 
u
 and 

v
 are the parameters of the Gaussian 

function. By changing the 
u
 and 

v
 parameters, we 

can change the shape of the function; in order  words, 
 

Fig. 3. (a) Point cloud with strong noise and an image of the original model; (b) Graph of the Gaussian function 

parameters

formulated as follows:

 The high-frequency components of the Fourier 

Eq. (4).
 In the next step, a smooth discrete surface is 

frequency data by IFFT in Eq. (2). In Fig. 3(a), a 
noisy point cloud bounded by the minimum rectangle 
and an image of the model constructed by a noiseless 
point cloud are shown. Figure 3(b) shows a Gaussian 

spectrum of the noisy point cloud, whereas Fig. 3(c) 
shows the constructed smooth surfaces with the 

of  in a Gaussian function.
 Once the smooth surfaces f (x

i
, y

j 
) and f (x

i
, y

j
 )(i 

=0, 1, . . . N
x y

 are constructed 
on the grid, the surface points are pruned on the 
basis of the distance-based criteria. We formulated 
the criteria as follows: if the surface point f (x

i
, y

j 
)

then we assume that the point f (x
i
, y

j 
) belongs to the 

overlapping surface P
1

where, d(f (x
i
, y

j 
),

1
) is the distance between points 

f (x
i
, y

j 
), 

1
( d

P
 , d

Q 
) is the 

average distance of input point clouds P and Q. 

 We can obtain two smooth surfaces, 
1
 and 

1
, 
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Fig. 4. (a) Noisy point cloud; (b) smoothed surface on the 
grid; (c) result after pruning the points.

overlapping each other by applying the techniques 
described in the previous sections. These point 
clouds can be registered by using the ICP algorithm 
(12), which uses the point-to-plane error metric:

where R is a rotation matrix, T is a transformation 
matrix, and (p

i
, q

i
) are point pairs with normal n

i
. 

By implementing the algorithm in Eq. (13), we can 
obtain six parameters including the operations of the 
rotation and the translation.

can be registered by the parameters obtained by the 
ICP algorithm. However, depending on the noise 
level and the rough registration of the point clouds, 
the proposed technique will require a multi-stage 
implementation. For each stage, the same techniques 

noise, and registeration of a point cloud by the ICP 
algorithm are implemented. The only deference 
between the stages is the parameter value for the 

process for registering noisy point clouds. Figure 
5(a) shows a point cloud with a strong noise and its 
initial alignments. For the registration of these point 
clouds, three stages are required. Figure 5(b)-(d) 
show point clouds whose noises were removed by 

in Eq. (10) and the registration result of noisy point 
clouds in each step. The parameter values such as 

u,1 v,1 u,2 v,2
 = 0.05 and

u,3 v,3
 = 0.1 

and some small features are removed from the point 
clouds. Thus, the result of the stage is an improved 
rough alignment of the point clouds. Starting from 

is performed between point clouds with certain 
features and a small level of noise.
 A number of stages of the proposed method depend 
on the noise level of the point clouds and on the 
complexity of the original model. The registration 
process will continue until the average variation of 
the point clouds is stabilized. For the noisy point 
clouds, a distance-based registration 

Fig. 5. (a) Original noisy point cloud and rough registration 

parameter values of  and point clouds registration results 
at each stage.

error measurement based on the average variation 
value of the registered point clouds. For the 
computation of the variation value for each point in 
the point cloud P

1
 Q

1
, the covariance matrix C is 

K neighborsby 

following function proposed by Pauly et al. (? ):

 are the eigenvalues of the 
covariance matrix C .

Fig. 6. (a) Average variation; (b) average distance at each 
step of the proposed method.Fig 6.jpg

(a)

(b)
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Figure 6 shows graphs of the average variation value 
of the point cloud P

1
 Q

1
 and the average nearest 

distance value between point clouds P  and Q  at 
each step of the proposed method’s process shown 
in Fig. 5.
 The process for registering noisy point clouds is 
summarized in Algorithm
1. 

Algorithm 1. Algorithm for registering noisy point 
clouds,

Input: Noisy point clouds P and Q
Input: 

i
 parameters of the Gaussian function

 
1. do
2. P  and Q
3. get next 

i

4. construct the coordinate system OXY Z = for  
P

1
 Q

1

5. N
x
 × N

y

6. for each x
i
 and y

j

7. compute the resampling values fP (x
i
, y

j
 )    

and fQ(x
i
, y

j
 )

8. end for
9. compute F F T(f  (x

i
, y

j
 )) and F F T(f  (xi, y

i
 ))

10. F  (u, v)| and |F (u, v)| by using a Gaussian 
function

11.  compute F F T(f  (u
i 
,v

j
 )) and IF F T(FQ(ui, vj ))  

// f  (x
i
, y

j
 ) and f (x

i
, y

j
 ) are obtained

12. implement the ICP algorithm  
on f  (x

i
, y

j
 ) and f (x

i
, y

j
 )     

// 6 parameters for registration are obtained
13.  13: register point clouds P and Q by 

parameters
14.   average variation not stabilized

Fig. 7. (a) Result of the proposed algorithm; (b) failed 
registration of the point clouds by the ICP algorithm.

5 Experimental results
 We applied the proposed method for registering 

experiments were performed on a machine with a 
2.8-GHz Intel Xeon E5-1603 processor and 8GB of 
RAM.
 In our experiment, the implementation was done 

noise owing to the limitation of scanning devices or 
to the physical property of the objects. For the others, 
noises were created by adding Gaussian noise with 
zero mean and a variance of a certain percentage of 
the average distance of the point clouds.
 For example, approximately 90% of noise 
was added to the point clouds in the experiment 
shown in Fig. 3. Rough registration was manually 
implemented by selecting the feature points. In the 

an object with a round shape. This type of object is 
good for showing the robustness of the method. To 
the point clouds, approximately 85% of noise was 
added. The proposed method requires two stages for 

in Fig. 7(a). Figure 7(b) shows the result of the ICP 
algorithm that failed to register these point clouds.                        

Fig. 8. (a) Result of the proposed algorithm for registering 

                             

Fig. 9. (a) Result of the proposed algorithm for registering 

 In the next experiment, the implementation was 
done for the point clouds of a gilt-bronze statue (see 
Fig. 1(a)) scanned by a NextEngine 3D laser scanner. 

(a) (b)
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Because of the surface properties of the shininess, 
there were noises in the point clouds. In addition, 

scanner such as macro and wide range were used 
in the experiment. The density of the point clouds 

times higher than that of the point clouds obtained 
by the wide-range mode. Figure 8 shows the result 
of the proposed method on noisy point clouds with 

 In the last experiment, we registered the point 
clouds of a sandy terrain captured by a Kinect 
sensor. Both point clouds included some noise 
because of terrain roughness. For the experiment, we 
added 30% and 80% of noise to these point clouds, 
respectively. The registration result is shown in Fig. 
9. The numerical results of our proposed algorithm 
are given in Table 1.

 In this paper, we presented a novel method 
for registering noisy point clouds. The main 
contributions of our research are as follows: (a) a 
singleiteration method for eliminating noise from 

the frequency domain and (b) a proposed new and 
robust algorithm for registering noisy point clouds.
 To remove noise in point clouds, we resampled 
overlapped point clouds and transferred them to the 
frequency domain by FFT. The Fourier spectrum of 

parameters of the Gaussian function. By registering 
the smoothed point clouds with the ICP algorithm, 
we obtained the registration parameters for the 
original point clouds. In addition, we suggested an 
error measurement based on the average variation 
value of the registered point clouds. For noisy point 

error measurement based on a distance.
In addition, the proposed method requires that the 
overlapped area of the point clouds should be an 
explicit discrete surface because of the DFT. This 
is one of the limitations of the proposed method. 
Another limitation of the method is that, if the 
number of points of the overlapped area is large, such 
as several millions of points, then the computation 
time of the method will be high because of the size 
of the FFT.
 We experimented with our method on many 

amounts of noise and noisy point clouds with 

 The proposed method showed robustness in 
the presence of strong noise. In the experiment, 
parameters of Gaussian window function are selected 
by user. The parameter values were depending on 
level of the noise and surface roughness. 
 In the future, research on automatic and optimal 
selection of the parameter values of the window 
function is required for improving application of the 
proposed method.
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Õóðààíãóé

Áèä ýíýõ¿¿ ºã¿¿ëýëä øóóãèàíò öýãýí ºãºãäëèéã á¿ðòãýõ îëîí àëõàìò àðãûã òàíèëöóóëíà. Àëõàì 
á¿ðò äàâõöñàí äèñêðåò ãàäàðãóóíóóäûã íýãýí çýðýã Ôóðüåãèéí õóðäàí õóâèðãàëò (FFT)-ààð äàâòàìæèéí 
îãòîðãóé ðóó õóâèðãàíà. Äàâòàìæèéí îãòîðãóéä ºãºãäñºí ôóíêöèéí òóñëàìæòàéãààð íàì äàâòàìæóóäûã 
ø¿¿í àâ÷, óëìààð óðâóó Ôóðüåãèéí õóâèðãàëòààð äèñêðåò ãàäàðãóóã äàõèí áàéãóóëíà. Ýíýõ¿¿ äàõèí 
áàéãóóëñàí ãàäàðãóóã õàìãèéí îéð öýãèéí èòåðàöè (ICP)-èéí àðãûí òóñëàìæòàé á¿ðòãýæ, õàðãàëçàõ 
á¿ðòãýëèéí ïàðàìåòð¿¿äèéã òîãòîîñîí. Ýäãýýð ïàðàìåòð¿¿äèéã àøèãëàí ºãºãäñºí øóóãèàíò öýãýí 
ºãºãäëèéã á¿ðòãýñýí. Äàðààãèéí àëõàìóóäûã äýýðõòýé àäèë àðãààð õýðýãæ¿¿ëñýí áºãººä çºâõºí íàì 
äàâòàìæèéã ø¿¿õ ø¿¿ëò¿¿ðèéí ïàðàìåòð¿¿äèéã ººð÷èëñºí. Ýíýõ¿¿ ïðîöåññèéã öººí àëõàì äàâòàí 
õýðýãæ¿¿ëñíèé äàðàà áèäíèé áîëîâñðóóëñàí àðãà øóóãèàíò öýãýí ºãºãäëèéã á¿ðòãýí àâàõàä èë¿¿ ñàéí 
¿ð ä¿í ºãñºí. Áèä äýýðõ àðãûã ñèéðýã öýãýí ºãºãäºë, øóóãèàíû ò¿âøèí ººð ººð áàéõ îëîí òºðëèéí 
öýãýí ºãºãäëèéã á¿ðòãýõýä òóðøèæ ¿çñýí.
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