
Mongolian Journal of Engineering and Applied Sciences, 2024, 6(1)

Information and Communication Technology

The Monnum Spiking Dataset for Spike Neural Networks
Adiyabat Enkhjargal1,∗, Byambajav Dorj1, Bayarpurev Mongol1, Telmuun Tumnee1 and Sumiyakhand
Dagdanpurev1 Sandagsuren Dashzeveg2

1Deparment of Electronics and Communication Engineering, School of Information Technology and Electronics,
National University of Mongolia 2Financial Regulatory Commission of Mongolia

Received on 2024-05-12; Revised on 2024-05-12; Accepted on 2024-05-24
∗Corresponding author: Sumiyakhand.D, sumiyakhand@num.edu.mn

Abstract
Spiking Neural Networks are a type of artificial neural network that mimics the way biological neural networks in
the brain process information. Spiking neural networks form the foundation of the brain’s efficient information
processing. While we don’t fully understand how these networks calculate, recent optimization techniques
allow us to create increasingly complex functional spiking neural networks in a simulated environment. These
methods promise to develop more efficient computing hardware and explore new possibilities in understanding
brain circuit function. It is essential to have objective methods to compare their performance to speed up
the development of such techniques. However, there are currently no widely accepted means of comparing the
computational performance of spiking neural networks. We have introduced a new spike-based classification
dataset that can be widely used to evaluate software performance and neuromorphic hardware implementations
of spiking neural networks to address this issue. To achieve this, we have created a general procedure for
converting audio signals into spiking neural network activity, drawing inspiration from neurophysiology. We
created the Monnum digit dataset specifically for this study. Within the range of this research, We implemented
a digit recognition system from 1 to 10 spoken in the Mongolian language for the Spike neural network. The
last is data for training and testing, which was prepared in HDF5 format extension and then trained in the
SNN network.

Key words: Spiking neural networks , audio, data set, spoken digits, classification.

1 Introduction

Spiking neural networks (SNNs) are biology’s solu-
tion for fast and versatile information processing. From
a computational point view, SNNs has several desir-
able properties: They are able to process information
in parallel, have a high tolerance for noise and are ex-
tremely energy efficient. [1] The precise computations
carried out in a given biological SNN largely depend
on its connectivity structure. To simulate functional
connectivity in silico, a gaining number of training al-
gorithms for SNNs have been developed [2]- [8] for con-
ventional computers and neuromorphic hardware [8]-
[14]. The existence of various learning algorithms high-
lights the need for a systematic way to compare them.
Unfortunately, only a few benchmark data sets are
widely accepted for SNNs, making it difficult to make
accurate comparisons. Hence, in this study, we seek to
fill this gap by introducing one new broadly applicable
classification data set for SNNs.

2 Methods

To enhance the quantitative comparison among
SNNs, we generated a small spike-based classification

data set from audio recordings. To achieve our goal,
we have collected the MonDigits data set. In the fol-
lowing, we describe the data sets, the audio-to-spike
conversion (Section 2.2) and data format used for pub-
lication (Section 2.3). We close with a deciption of the
SNN model (Section 2.4). The non spikng classifier are
explained in Section 2.

2.1 Audio Data Set

In the following, we consider the MD. The MD were
designed to prioritize recording quality and precise au-
dio alignment.
1) MonNum Digits: The MD data set consists approxi-
mately high-quality recording of spoken digits ranging
from zero to ten in Mongolian. In total, 120 speak-
ers were included, fifty three of which were female and
sixty seven male. The speaker ages ranged from 10 yr
to 40 yr with a mean of 30 yr. We recorded a total
1120 digits in 10—20 sequences for language. (see Fig.
1) The digits were obtained in sequences of ten succes-
sive digits. Recordings were performed with a wireless
microphone (Sony ECMA4) in a no-shielded room at
the National University of Mongolia. Recordings were
made in WAVE format with a sample rate of 8kHz and
16-bit precision.

1



2 Adiyabat.E et.al, The Monnum Spiking Dataset for Spike Neural Networks

To improve the yield of the automated processing,
the raw data audio tracks were manually pre-selected
and cut, and then converted to free lossless audio codec
format (FLAT) format. The cleaned-up tracks were ex-
ternally mastered. The cutting times of digit sequences
were determined using a gate with speaker-dependent
threshold and release time which were optimized by
Audacity in [23].

Figure 1: MonNum Digits MD

2.2 Spike Conversion

We used the audio files mentioned earlier to create out
spiking data set. Using an artificial model1 of the inner
ear and parts of the ascending auditory pathway, audio
data was converted into spikes. (See Fig 2.) This bio-
logically inspired model effectively performs similar sig-
nal processing steps as customary spoken language pro-
cessing applications [16]. First, a hydrodynamic basilar
membrane model results spatial frequency dispersion,
which is similar to computing a spectrogram with Mel-
spaced filter banks. Second, Instantaneous firing rates
are computed from separated frequencies using a bi-
ologically motivated transmitter pools based hair cell
(HC) model. This cell model includes refractory effect
and a layer of bushy cells (BCs) that enhance phase
locking. (refer to Fig.2 ) All model parameters were
chosen to mimic biological findings, thereby reducing
the amount of free parameters [17].
The inner-ear model approximates auditory spiking

activity with a low computational cost. This biologi-
cally inspired conversion eliminates user-specific audio-
to-spike transformation, ensuring comparability and
serving as the basis for our benchmark data sets. .

2.3 Event-Based Data format

We simplified access to the data set by using an
event-based representation of spikes in the Hierarchical
Data Format (HDF5) to making it easier for a broader
community to use. This choice ensured short download

1https://github.com/electronicvisions/lauscher

Figure 2: Processing tube for MD

times and easy access from most common programming
environments [17]. For data set, we provide a single
HDF5 file which holds spikes, digit labels, and addi-
tional meta information. We made these files publicly
available2 , together with supplementary information
on the general usage as well as code snippets. A single
file is organized as follows [17]

2.4 Spiking Network model

We trained networks of leaky integrate-and-fire neu-
rons using surrogate gradients and backpropagation
through time (BPTT) with supervised loss functions
to established a performance reference on a spiking
data set. The study describes the network architec-
tures (Section 2.4.1), followed by the applied neurons
and synapse model (Section 2.4.2). We conclude with
a depiction of the weight initialization (Section 2.4.3),
the supervised learning algorithm (Section 2.4.4), the
loss function (Section 2.4.5), and the regularization
techniques (Section 2.4.6).

2.4.1 Network model

The spiketrains emitted by the Nch = 70 BCs were
used to stimulate the actual classification network [17].
In this article, we trained both feed-forward and re-
current networks; each hidden layer contains N = 128
LIF neurons. For all network architectures, the last
layer was accompanied by a linear readout consisting
of leaky integrators which did not spike.

2.4.2 Neuron and synapse models

Neuron and Synapse Models: We considered LIF neu-

rons where membrane potential u
(l)
i of the i th neuron

in layer l obeys the differential equation

τmem
du

(l)
i

dt
= −[u(l)

i (t)− uleak] +RI
(l)
i (t) (1)

with the membrane time constant τmem the input resis-
tance R, the leak potential uleak and the input current

I
(l)
i (t). Spikes were described by their firing time. The

kth firing time of neuron i in layer l is denoted by kt
(l)
i

and defined by a threshold criterion.

2https://www.tensorflow.org



Mongolian Journal of Engineering and Applied Sciences, 2024, 6–1 3

kt
(l)
i : u

(l)
i (kt

(l)
i ) ≥ uthres (2)

Immediately after kt
(l)
i , the membrane potential is set

to the leak potential u
(l)
i (t) = uleak. The synaptic in-

put current onto the ith neuron in layer l was gener-
ated by the arrival of presynaptic spikes from neuron

j, S
(l)
j (t) =

∑
k δ(t −k t

(l)
j ) . A common first-order ap-

proximation to model the time course of synaptic cur-
rents are exponentially decaying currents which sum
linearly [18].

du
(l)
i

dt
= −I

(l)
i (t)

τsyn
+
∑
j

W
(l)
ij S

(l−1)
j (t) +

∑
j

V
(l)
ij S

(l)
j (t)

(3)
where the sum runs over all presynaptic partners j and

W
(l)
ij are the corresponding afferent weights from layer

below. The V
(l)
ij resemble the recurrent connections

within each layer. In this work, the reset was incorpo-
rated in (1) through an extra term

du
(l)
i

dt
= −u

(l)
i + uleak −RI

(l)
i

τmem
+ S

(l)
i (t) (uleak − ut)

(4)
To formulate the above equation in discrete time for
time step n and stepsize δt over a duration T = nδt,

the output spiketrain S
(l)
i [n] of neuron i in layer l at

time step n is expressed as a nonlinear function of the

membrane potential S
(l)
i [n] = Θ

(
u
(l)
i + uthres

)
with

the Heavyside function Θ. For small time steps δt,
we can express the synaptic current in disrete time as
follows:

I
(l)
i [n+ 1] = kI

(l)
i [n]+

∑
j

W
(l)
ij S

(l)
j [n] +

∑
j

V
(l)
ij S

(l)
j [n]

(5)
Furthermore, by asserting uleak = 0 and uthres = 0,
the membrane potential can be written compactly as

I
(l)
i [n+ 1] = λI

(l)
i [n]

(
1− S

(l)
i [n]

)
+ (1− λ) I

(l)
i [n]

(6)
where we have set R = (1− λ) and introduced the

constrants k = exp
(
− δt

τsyn

)
and k = exp

(
− δt

τmem

)

2.4.3 Weight Initialization

In all our spiking network simulations we use Kaim-
ing’s uniform initialization [19] for the weightsWij , Vij .
Specifically, the initial weights were drawn indepen-

dently from a uniform distribution U
(
−
√
k,
√
k
)
with

k = (# afferent connections)−1.

2.4.4 Supervised Learning

The goal of learning was to minimize a cost function L
over the entire data set. To achieve this, surrogate gra-

dient descent was applied which modifies the network
parameters Wij

Wij ←Wij − η
∂L
∂Wij

(7)

with the learning rate η. We used custom PyTorch
[20] code implementing the SNNs. Surrogate gradients
were computed using PyTorch’s automatic differenti-
ation capabilities by overloading the derivative of the
spiking nonlinearity with a differentiable function as
described previously [8], [20]. An instructive example
of such an implementation in PyTorch can be found
online.3 Specifically, we chose a fast sigmoid for the
surrogate gradient

σ
(
u
(l)
i

)
=

u
(l)
i

1 + β
∣∣∣u(l)

i

∣∣∣ (8)

with the steepness parameter β.

2.4.5 Loss functions

We applied a cross entropy loss to the ac-
tivity of the readout layer l = L. On
data with Nbatch samples and Nglass classes,
{(xs, ys)|s = 1, . . . , Nbartch; ys ∈ {1, . . . , Nglass }}
it takes the from

L = − 1

Nbatch

Nbatch∑
s=1

⊮(i = ys) log(
exp(u

(L)
i [n̂i])∑Nclass

i=1 exp(u
(L)
i [n̂i])

)

(9)
with the indicator function ⊮. We tested the fol-
lowing two choices for the time step ñ: For the
max-over-time loss, the time step with maximal mem-
brane potential for each readout unit was considered

ñi = argmaxnu
(L)
i [ñi]. In contrast, the last time step

T in case of the last-time-step loss. We minimized the
cross entropy in (9) using the Adamax optimizer [22].

2.4.6 Regularization

For our experiments, we added synaptic regularization
terms to the loss function to avoid pathologically high
or low firing rates. In more details. We used two dif-
ferent regularization terms: As a first term, we used a
per neuron lower threshold spike count regularization
of the form

L1 = − Sl

Nbatch

Nbatch∑
s=1

N∑
i=1

[
max

{
0,

1

T

T∑
n=1

S
(l)
i [n]− θl

}]2

(10)
with strength Sl, and threshold θl. Second, we used an
upper threshold mean population spike count regular-
ition

L2 = − Su

Nbatch

Nbatch∑
i=1

[
max

{
0,

1

N

N∑
i=1

T∑
n=1

S
(l)
i [n]− θl

}]2

(11)



4 Adiyabat.E et.al, The Monnum Spiking Dataset for Spike Neural Networks

3 Results

First, We prepared the spoken digit by cutting it to
an average length of 0.85 seconds. We converted our
audio WAV files to the FLAC format with a sampling
rate of 8KHz using FFmpeg and Audacity open-source
software. After that, Audio data were converted into
spikes using a model of inner ear and the ascending
auditory pathway which combines a basilar membrane
(BM) model with population of hair cells (HCs) fol-
lowed by a population of bushy cells (BCs) for spike
generation. These results are shown in the following
it. The timing of the audio spike varies from one au-
dio to another. You can see the generation spikes in

Table 1: The process of spike generation

Stage Spent time
RmsNormalizer 0.0000 seconds.
HanningWindow 0.0012 seconds.
BasilarMembrane 1.7631 seconds.
HairCell 2.9683 seconds.
BushyCell 3.1463 seconds.
Wave2Spike 7.8800 seconds.

the following figure 3. This dataset uses a more so-
phisticated cochlear model to generate the spike data
corresponding to audio recordings of spoken digits.

Figure 3: Spikes in 700 input channels were gener-
ated using an artificial cochlea model

To determine the relevance of our newly created spik-
ing dataset, we sought to confirm that the dataset was
not saturated and to prove that spike timing informa-
tion was essential for accurate task solving. To con-
duct the test, we first created a reduced version of the
dataset that eliminated all temporal. After reducing
spike count data set, we trained various linear and non-
linear support vector machine (SVM) classifiers and
measured their classification performance on respective
test sets. We observed that the linear SVM overfit-
ted the SMD data, but its test performance marginally

3https://github.com/fzenke/spytorch

exceeded the 54% accuracy (Figure 4). Thus linear
classifiers provided a low degree of generalization. We
trained SVMs with a radial basis function (RBF) kernel
to evaluate whether this was different for the nonlinear
classifier. In the following figure, We show the accuracy
of the test of the linear SVM machine and nonlinear
SVM. A negligibly better performance of about 60% on
the SMD was achieved when using a SVM with a ra-
dial basis function (RBF) kernel. Next, We considered

Figure 4: Bar graph of classification accurancy for
different SVMs

spiking neural networks (SNNs) with fixed [17], finite
time constants on the order of milliseconds inspired by
biology. Schematic of a single layer recurrent network
with two readout units. We applied two different loss
functions for SVM and SNNs: First, a max-over-time
loss was considered, where the time step with maximal
activity of each readout was used to calculate the cross
entropy (marked by colored arrows). Second, a last-
time-step loss was utilized where only the last time
step of the activation was considered in the calcula-
tion of the cross entropy (marked by gray arrow). The
inset illustrates the corresponding feed-forward topol-
ogy. [17].

Figure 5: Schematic SNN setup



Mongolian Journal of Engineering and Applied Sciences, 2024, 6–1 5

We have confirmed that set of spiking data con-
tain valuable temporal information that can be read
out by an appropriate classifier. Our goal was to
train Spiking Neural Networks (SNNs) using Leaky
Integrate-and-Fire (LIF) neurons with Backpropaga-
tion Through Time (BPTT) in order to establish initial
performance benchmarks and evaluate their ability to
generalize. One challenge in training SNNs with gra-
dient descent is the presence of the derivative of the
neural activation function in the gradient evaluation.
This results in ill-defined gradients due to the discon-
tinuous nature of spiking. To train networks of LIF
neurons using supervised loss function, a surrogate gra-
dient approach was employed [8]. Surrogate gradients
can be viewed as a continuous relaxation of the natu-
ral gradients of a SNN. They can be implemented as
an in-place replacement when performing BPTT. Im-
portantly, we did not change the neuron model and the
associated forward-pass of the model, but used a fast
sigmoid as a surrogate activation function when com-
puting gradients (Methods Section 2.4.4). We trained
SNN architecture on the SMD. The SNN achieved the
highest accurancy of 64.9% on the SMD. The perfor-
mance was markedly better than the one reached by
SVMs.

4 Conclusions

This paper presents a new dataset of Mongolian-
language spoken digits for spike-based classification,
facilitating a quantitative comparison of SNNs. Fur-
ther, we provide a first set of baselines for future com-
parisons by training spiking and non-spiking classifiers.
In order to drive progress in the field of neuromorphic
computing, it is essential to establish a set of bench-
marks that present real-world challenges. This will al-
low for the measurement of improvements and the stan-
dardization of evaluations across various platforms. We
consider the dataset in this article to be our contribu-
tion towards this objective. In the future, we can sig-
nificantly increase the number of datasets and change
the parameters of SNN to improve the results. In this
summary, we introduced an open spiking dataset of
Mongolian-language spoken digits and conducted the
first set of performance measurements using the SNN
classifier. This marks a significant step towards quan-
titatively comparing the functionality of SNNs in tra-
ditional computers and neuromorphic hardware.

Author Contributions

Adiyabat E. and Dashzeveg S. developed the ma-
chine learning method and created the HDF5 dataset.
They trained the SSN model. Byambajav D. and Ba-
yarpurev M. provided guidance on the experimental
process and the analysis of the results. Sumyakhand
D. and Telmuun T. were responsible for writing and

editing the article.

Conflict of Interest

There will not be any conflicts of interest.

References

[1] K. Boahen, “A neuromorph’s prospectus,” Com-
put. Sci. Eng., vol. 19, no. 2, pp. 14 28, 2017.

[2] F. Zenke and S. Ganguli, “SuperSpike: Supervised
learning in multilayer spiking neural networks,”
Neural Comput., vol. 30, no. 6, pp. 1514–1541,
Jun. 2018. DOI: 10.1162/neco a 01076.

[3] M. Pfeiffer and T. Pfeil, “Deep learning with spik-
ing neurons: Opportunities and challenges,” Fron-
tiers Neurosci., vol. 12, p. 774, Oct. 2018. DOI: .

[4] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh,
T. Masquelier, and A. Maida, “Deep learning in
spiking neural networks,” Neural Netw., vol. 111,
pp. 47–63, Mar. 2019. DOI: .

[5] G. Bellec, D. Salaj, A. Subramoney, R. Legen-
stein, and W. Maass, “Long short-term memory
and learning-to-learn in networks of spiking neu-
rons,” in Proc. Adv. Neural Inf. Process. Syst.,
2018, pp. 787–797.

[6] S. B. Shrestha and G. Orchard, “SLAYER: Spike
layer error reassign- ment in time,” in Advances
in Neural Information Processing Systems, S.
Bengio, H. Wallach, H. Larochelle, K. Grau-
man, N. Cesa-Bianchi, and R. Garnett, Eds. Red
Hook, NY, USA: Curran Associates, 2018, pp.
1419–1428.

[7] S. Woániak, A. Pantazi, T. Bohnstingl, and E.
Eleftheriou, “Deep learning incorporating biolog-
ically inspired neural dynamics and in- memory
computing,” Nature Mach. Intell., vol. 2, no. 6,
pp. 325–336, Jun. 2020. v

[8] E. O. Neftci, H. Mostafa, and F. Zenke, “Sur-
rogate gradient learning in spiking neural net-
works,” 2019, arXiv:1901.09948. [Online]. Avail-
able: http://arxiv.org/abs/1901.09948

[9] J. Schemmel, D. Briiderle, A. Griibl, M. Hock, K.
Meier, and S. Millner, “A wafer-scale neuromor-
phic hardware system for large-scale neural mod-
eling,” in Proc. IEEE Int. Symp. Circuits Syst.,
May 2010, pp. 1947–1950. DOI: .

[10] S. Friedmann, J. Schemmel, A. Grubl, A. Hartel,
M. Hock, and K. Meier, “Demonstrating hybrid
learning in a flexible neuromorphic hardware sys-
tem,” IEEE Trans. Biomed. Circuits Syst., vol. 11,
no. 1, pp. 128–142, Feb. 2017. DOI: .

http://dx.doi.org/10.1162/neco_a_01086
http://dx.doi.org/10.3389/fnins.2018.00774
http://dx.doi.org/10.1016/j.neunet.2018.12.002
https://doi.org/10.1109/iscas.2010.5536970
https://doi.org/10.1109/tbcas.2016.2579164


6 Adiyabat.E et.al, The Monnum Spiking Dataset for Spike Neural Networks

[11] S. B. Furber et al., “Overview of the SpiNNaker
system architecture,” IEEE Trans. Comput., vol.
62, no. 12, pp. 2454–2467, Dec. 2013. DOI: .

[12] M. Davies et al., “Loihi: A neuromorphic many-
core processor with on-chip learning,” IEEE Mi-
cro, vol. 38, no. 1, pp. 82–99, Jan. 2018.

[13] S. Moradi, N. Qiao, F. Stefanini, and G. Indiveri,
“A scalable multicore architecture with heteroge-
neous memory structures for dynamic neu- romor-
phic asynchronous processors (DYNAPs),” IEEE
Trans. Biomed. Circuits Syst., vol. 12, no. 1, pp.
106–122, Feb. 2018. DOI: .

[14] K. Roy, A. Jaiswal, and P. Panda, “Towards
spike-based machine intelligence with neu-
romorphic computing,” Nature, vol. 575,
no. 7784, pp. 607–617, Nov. 2019. [Online].
Available:https://www.nature.com/articles/s41586-
019-1677-2

[15] M. Davies, “Benchmarks for progress in neuro-
morphic computing,” Nature Mach. Intell., vol. 1,
no. 9, pp. 386–388, Sep. 2019. DOI: .

[16] X. Huang, A. Acero, H.-W. Hon, and R. Reddy,
Spoken Language Processing: A Guide to Theory,
Algorithm and System Development. Upper Sad-
dle River, NJ, USA: Prentice-Hall, 2001.

[17] B. Cramer, Y. Stradmann, J. Schemmel, “The
Hiedelberg Spiking Data Sets for the Systematic
Evaluation of Spiking Neural Networks”, IEEE
Transactions on Neural Networks and Learning
sytems, VOL.33, NO. 7, JULY 2022. DOI: .

[18] W. Gerstner and W. M. Kistler, Spiking Neuron
Models: Single Neurons, Populations, Plasticity.
Cambridge, U.K.: Cambridge Univ. Press, 2002.
DOI: .

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Delv-
ing deep into rectifiers: Surpassing human-level
performance on ImageNet classification,” in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015,
pp. 1026–1034. DOI: .

[20] A. Paszke et al., “Automatic differentiation in Py-
Torch,” in Proc. NIPS, 2017, p. 5.

[21] F. Zenke and T. P. Vogels, “The re-
markable robustness of surrogate gradi-
ent learning for instilling complex function
in spiking neural net- works,” bioRxiv, p.
2020.06.29.176925, Jun. 2020. [Online]. Available:
https://www.biorxiv.org/content/10.1101/2020.06.29.176925v1

[22] D. P. Kingma and J. Ba, “Adam: A
method for stochastic optimization,”
2014, arXiv:1412.6980. [Online]. Available:
http://arxiv. org/abs/1412.6980

[23] ”Audacity: Free Audio Editor and Recorder”.
audacityteam.org. Archived from the original on
March 14, 2011. Retrieved January 5, 2012.

[24] Robert Gütig and Haim Sompolinsky. The tem-
potron: a neuron that learns spike timing-based
decisions. Nat Neurosci, 9(3):420–428, March
2006. ISSN 1097-6256. : 10.1038/nn1643.

https://doi.org/10.1109/tc.2012.142
https://doi.org/10.1109/tbcas.2017.2759700
https://doi.org/10.1038/s42256-019-0097-1
https://doi.org/10.1109/tnnls.2020.3044364
https://doi.org/10.1017/cbo9780511815706
https://doi.org/10.1109/iccv.2015.123

	Introduction
	Methods
	Audio Data Set
	Spike Conversion
	Event-Based Data format
	Spiking Network model
	Network model
	Neuron and synapse models
	Weight Initialization
	Supervised Learning
	Loss functions
	Regularization


	Results
	Conclusions

