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КРИПТОВАЛЮТЫН ХАНШИЙГ ARIMA БОЛОН SARIMAX 
ЗАГВАРААР ТААМАГЛАХ НЬ

Г.Лхамдулам*,		С.Цолмон**

Хураангуй: Энэхүү	судалгааны	зорилго	нь	хугацаан	цуваан	шинжилгээнд	
хамгийн	өргөн	ашигладаг	ARIMA	болон	SARIMAX	загварт	тулгуурлан	
зарим	криптовалютын	ханшийг	урьдчилан	таамаглах	явдал	юм.	Эдгээр	
загваруудын	 параметрийг	 тодорхойлохдоо	 автокорреляцийн	 функц	
(ACF)	болон	хэсэгчилсэн	автокорреляцийн	функц	(PACF)	шинжилгээг	
хийсэн.	 Судалгаандаа	 бид	 Finance.yahoo.com	 болон	 CoinMarketCup.
com	 веб	 сайтаас	 2015	 оны	 9	 сарын	 9-өөс	 2022	 оны	 10	 сарын	 31-
ны	 өдрийг	 хүртэлх	 2600	 өдрийн	 мэдээлэлд	 тулгуурлан,	 python	 3.10	
программ	дээр	боловсруулалт	хийсэн.	Хугацааны	хоцролтын	оновчтой	
зэргийг	тогтоосны	дараа	биткойны	ханшийг	таамаглах	хамгийн	оновчтой	
загвар	нь	ARIMA	(0,1,0)(0,0,0)[0],	харин	эфириумийн	ханшийн	хувьд	
ARIMA(2,1,1)(0,0,0)[0]	загвар	нь	хамгийн	бага	алдаатай	гарсан	байна.		
Түлхүүр үгс: машин	 сургалт,	 хугацаан	 цуваа,	 криптограф,	 биткойн,	
эфириум

FORECASTING CRYPTOCURRENCY RATES USING ARIMA 
AND SARIMAX MODELS
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Abstract: The objective of this study is to forecast the exchange rates of 
select	cryptocurrencies	using	the	widely	recognized	ARIMA	and	SARIMAX	
models	for	time	series	analysis.	Autocorrelation	function	(ACF)	and	partial	
autocorrelation	function	(PACF)	analyses	were	conducted	to	ascertain	the	
parameters	for	these	models.	Our	research	is	grounded	in	a	dataset	spanning	
2600	days	sourced	from	Finance.yahoo.com	and	the	CoinMarketCap.com	
website,	covering	the	period	from	September	9,	2015,	to	October	31,	2022.	
The	data	was	processed	using	Python	3.10.	Upon	identifying	the	optimal	
time	lag,	the	preferred	model	for	predicting	Bitcoin	prices	is	ARIMA	(0,1,0)
(0,0,0)[0],	 while	 for	 Ethereum,	 the	 optimal	 model	 is	 ARIMA(2,1,1)
(0,0,0)[0],	demonstrating	the	lowest	error.		
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Introduction 
	Cryptocurrencies	represent	virtual	and	electronic	forms	of	currency,	constituting	

a	 subset	of	virtual	 currencies	 secured	 through	cryptography	(Ivanchenko,	2021).	
Typically, cryptocurrencies employ intricate cryptographic algorithms, necessitating 
a network of interconnected computers to execute complex mathematical operations 
(Chowdhury,	 2019).	 Notably,	 these	 currencies	 operate	 in	 an	 unregulated	
environment,	rendering	them	highly	volatile	(Ivanchenko,	2021).

The allure of this market lies in the fact that the technology employed in 
cryptocurrency mining offers a viable alternative to conventional markets, such as 
gold.	Additionally,	cryptocurrencies	stand	out	from	traditional	currencies	as	there	is	
incomplete information available about cash transactions and the total currency in 
circulation. While forecasting cryptocurrency price movements is challenging, it is 
not	deemed	impossible	(Valencia,	2019).	

In	recent	years,	alongside	the	utilization	of	certain	cryptocurrencies	as	official	
currencies and for international payments, there has been a surge in investor interest 
in	capitalizing	on	exchange	rate	differentials.	Consequently,	a	considerable	amount	
of research has been conducted in the realm of predicting cryptocurrency prices 
(Ivanchenko,	2021).

The study will further investigate the precision of predicting Bitcoin prices. 
One-variable	dynamic	models,	specifically	ARIMA,	are	employed	for	time	series	
modeling, utilizing this approach to assess and forecast exchange rates. Through this 
model, we can discern which algorithm exhibits a lesser deviation from the actual 
value,	 enhancing	 the	 accuracy	 of	 predicting	 and	 forecasting	 short-term	 exchange	
rate prices.

Cryptocurrency and Blockchain technology
Cryptocurrency	is	a	digital	currency	created	for	transactional	purposes	across	

computer	networks.	It	operates	as	a	decentralized	and	independent	form	of	currency,	
free from the oversight and control of central entities such as governments or banks. 
The reluctance of central authorities to internationally recognize cryptocurrencies 
is	 rooted	 in	 the	 concern	 that	 national	 currencies	 might	 experience	 a	 short-term	
weakening	against	these	digital	counterparts.	(niss.gov.mn,	2018).	

Cryptocurrencies	lack	a	physical	form,	unlike	traditional	paper	money,	and	are	
typically	not	governed	by	a	central	authority.	In	contrast	to	Central	Bank	Digital	
Currencies	(CBDCs),	cryptocurrencies	commonly	operate	with	decentralized	control.	
A	cryptocurrency	is	typically	deemed	centralized	if	it	is	generated	or	created	prior	to	
issuance,	or	if	it	is	issued	by	a	singular	entity.	In	the	case	of	decentralized	control,	
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each cryptocurrency functions on a blockchain or distributed ledger technology, 
serving	as	a	public	database	for	financial	transactions	(Reaz	Chowdhury,	M.	Arifur	
Rahman	,	M.	Sohel	Rahman	,M.R.C.	Mahdy,	2015).

The	inaugural	cryptocurrency,	Bitcoin,	was	introduced	as	open-source	software	
in	2009.	By	March	2022,	the	market	boasted	over	9,000	cryptocurrencies,	with	
more than 70 of them commanding a market capitalization surpassing $1 billion. 
Various parameters of the four types of openly traded cryptocurrencies, including 
market	supply	volume,	24-hour	transactions,	new	block	creation	time,	and	exchange	
rates, exhibit distinct trading patterns in the market. The new block creation time, 
reward amount, and algorithmic change procedures differ for each cryptocurrency. 
Additionally,	 the	 speed	 of	 hash	 checks	 is	 determined	 by	 the	 computing	 power	
of miners in the network. Detailed explanations for each of these currencies are 
provided below.

Moreover,	the	blockchain	functions	as	a	mechanism	employing	cryptography	
and encryption, utilizing a specialized mathematical algorithm for the creation and 
verification	of	a	progressively	expanding	data	structure.	Essentially,	new	information	
is	added	without	deleting	previous	data,	forming	a	sequential	chain	of	“transaction	
blocks”	(gratanet.com,	2020).

Blockchain 1.0 is expected to serve as a fundamental application for money 
transfers, remittances, and digital payment systems, akin to conventional cash 
or cryptocurrencies. Furthermore, Blockchain 2.0 extends beyond simple money 
transactions, evolving into a platform capable of managing a wider array of financial 
derivatives, including stocks, bonds, mortgages, futures, smart assets, and certificates.

The	 adoption	 of	 Blockchain	 3.0	 represents	 a	 rapid	 and	 cost-effective	
integration of blockchain technology, facilitating competition with centralized financial 
institutions.	Its	impact	extends	beyond	the	financial	sector	to	enhance	data	security	
in the health sector, utilizing distributed technology for improved data storage and 
transmission.	In	the	logistics	industry,	it	enhances	control	over	goods	and	products,	
while in the electoral system, it introduces transparency. This adoption aims to 
increase	accessibility	while	simultaneously	fortifying	security	(learn.bybit.com).

Being a cryptocurrency, it operates without regulation from governments or 
organizations, and its information is encrypted with a widely distributed private key 
within the network. While it shares the foundation of blockchain technology with 
other cryptocurrencies, its programming sets it apart. 
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Research design and methodology
The data utilized in this study were gathered from Finance.yahoo.com 

and	 CoinMarketCap.com,	 covering	 daily	 data	 from	 September	 9,	 2015,	 to	
October	31,	2022,	for	the	peak	market	values	of	Bitcoin	(BTC)	and	Ethereum	
(ETH),	 two	 prominent	 cryptocurrencies.	 In	 forecasting	 the	 exchange	 rates	 for	
these	cryptocurrencies,	we	employed	ARIMA	(Autoregressive	Integrated	Moving	
Average)	and	SARIMAX	(Seasonal	Auto-Regressive	Integrated	Moving	Average	
with	eXogenous	factors)	models,	commonly	used	in	time	series	analysis,	through	the	
Python 3.10 programming language.

The	 ARIMA	 model	 was	 initially	 introduced	 in	 Peter	 Whittle’s	 thesis,	
“Hypothesis	Testing	in	Time	Series	Analysis.”	It	is	widely	regarded	as	the	most	
popular	method	for	financial	forecasting.	Its	recognition	further	expanded	in	1971	
when	 it	was	prominently	 featured	 in	 a	book	by	George	E.P.	Box	 and	Gwilym	
Jenkins.

ARIMA	 models	 are	 segmented	 into	 Autoregressive	 (AR)	 and	 Moving	
Average	 (MA)	 components.	 The	Autoregressive	 (AR)	model	 operates	 on	 the	
principle	of	regressing	the	target	variable	on	its	past	values,	with	the	AR	model	
equation	taking	a	lagged	form.

Y	is	expressed	as	a	linear	function	of	the	preceding	n	values,	wherein	the	value	
of n can be replaced by coefficients B0 and B1. These beta values are determined 
during	the	model	fitting	process.	The	resulting	equation	can	be	employed	to	forecast	
future	values	by	making	appropriate	adjustments	to	the	equation.

  [1]

                 [2]

A	 component	 of	ARIMA	 involves	 the	 process	 of	 data	 stationarity,	 which	
is	applied	when	the	 time	series	data	exhibits	non-stationarity,	as	depicted	 in	 the	
equation	below.	[3]	This	process	assumes	that	future	values	of	Y	are	linear	functions	
of	 its	past	changes	and	 that	 the	values	of	Y	must	exhibit	a	constant	mean	and	
variance.
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ARIMA(𝑝,𝑑,𝑞)	 serves	 as	 the	 standard	notation	 for	 representing	ARIMA	
models. These parameters can be substituted with integers to define the specific 
model	 type.	 “p”	 signifies	 the	 number	 of	 lags	 of	Y	 included	 in	 the	model,	 “d”	
represents	 the	order	of	differencing	needed	 to	achieve	data	 stationarity,	and	“q”	
denotes	the	MA	order,	which	is	the	number	of	backward	prediction	errors	(Chahat,	
Tandon;	Sanjana,	Revankar;	Hemant,	Palivel,	2021).

Research results
The	 selected	 cryptocurrencies,	 Bitcoin	 (BTC)	 and	 Ethereum	 (ETH),	

are	 employed	 in	 forecasting	 cryptocurrency	 exchange	 rates	 through	 a	 sequential	
ARIMA	model.	This	approach	assumes	that	the	daily	exchange	rate	is	dependent	
on its preceding value and a random error. Logarithms were applied to exhibit 
linearity in the analysis.  

iv 

 

 

𝑌𝑌 = 𝐵𝐵0 + 𝐵𝐵1 ∗ 𝑌𝑌−lag 1 + 𝐵𝐵2∗𝑌𝑌−lag 2 + ⋯+ 𝐵𝐵𝑛𝑛 ∗ 𝑌𝑌−lagn  [1] 

𝑌𝑌−forward1 = 𝐵𝐵0 + 𝐵𝐵1 ∗ 𝑌𝑌 + 𝐵𝐵2∗𝑌𝑌 − lag 1
+⋯𝐵𝐵𝑛𝑛∗𝑌𝑌−lag(𝑛𝑛 − 1)                  [2] 

A component of ARIMA involves the process of data stationarity, which is applied 
when the time series data exhibits non-stationarity, as depicted in the equation below. [3] 
This process assumes that future values of Y are linear functions of its past changes and 
that the values of Y must exhibit a constant mean and variance. 

𝑌𝑌−forward 1 − 𝑌𝑌 = 𝐵𝐵0 + 𝐵𝐵1 ∗ (𝑌𝑌 − 𝑌𝑌−lag 1)
+𝐵𝐵2∗(𝑌𝑌−lag 1 − 𝑌𝑌−lag 2) + ⋯ [3] 

ARIMA(𝑝𝑝,𝑑𝑑,𝑞𝑞) serves as the standard notation for representing ARIMA models. 
These parameters can be substituted with integers to define the specific model type. "p" 
signifies the number of lags of Y included in the model, "d" represents the order of 
differencing needed to achieve data stationarity, and "q" denotes the MA order, which is 
the number of backward prediction errors (Chahat, Tandon; Sanjana, Revankar; Hemant, 
Palivel, 2021). 

Research results 
The selected cryptocurrencies, Bitcoin (BTC) and Ethereum (ETH), are employed in 

forecasting cryptocurrency exchange rates through a sequential ARIMA model. This 
approach assumes that the daily exchange rate is dependent on its preceding value and a 
random error. Logarithms were applied to exhibit linearity in the analysis.   

Figure 1 illustrates the price movements of Bitcoin and Ethereum. 
 

Figure	1	illustrates	the	price	movements	of	Bitcoin	and	Ethereum.

 Assessing the stability of the series involves examining whether the 
autocorrelation function has manifested in the time series, forming the 
basis for the reliability of the evaluation. Consequently, the stability of the 
exchange rate series for selected cryptocurrencies such as BTC and ETH is 
examined and presented in Figure 2.
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 Assessing the stability of the series involves examining whether the autocorrelation 
function has manifested in the time series, forming the basis for the reliability of the 
evaluation. Consequently, the stability of the exchange rate series for selected 
cryptocurrencies such as BTC and ETH is examined and presented in Figure 2. 

Figure 2 displays the outcomes of the rate stability testing.  

To evaluate the series stability, two hypotheses were formulated: the null hypothesis 
(H0) positing "There is no instability in the series," and the alternative hypothesis asserting 
"There is instability in the series." These hypotheses were tested using the Augmented 
Dickey-Fuller test (ADF). 

Table 1 presents the results of the Augmented Dickey-Fuller (ADF) test 
Time series   t-Statistic p-Value 

test critical value 

BTC 
1% -3.432868573 0.21 
5% -2.862652711 0 

10% -2.567362336 2.82E-29 

ETH 
1% -3.433948103 0.803137136 
5% -2.863129362 0 

10% -2.567616123 1.04E-26 

USDT 
1% -3.433974025 6.56E-06 
5% -2.863140805 9.50E-28 

10% -2.567622216 4.15E-29 

Source: Researchers' estimates 

Figure 2 displays the outcomes of the rate stability testing. 

To	 evaluate	 the	 series	 stability,	 two	 hypotheses	 were	 formulated:	 the	 null	
hypothesis	(H0)	positing	“There	is	no	instability	in	the	series,”	and	the	alternative	
hypothesis	 asserting	 “There	 is	 instability	 in	 the	 series.”	 These	 hypotheses	 were	
tested	using	the	Augmented	Dickey-Fuller	test	(ADF).

Table	1	presents	the	results	of	the	Augmented	Dickey-Fuller	(ADF)	test

Time series t-Statistic p-Value

test critical value

BTC

1% -3.432868573 0.21

5% -2.862652711 0

10% -2.567362336 2.82E-29

ETH

1% -3.433948103 0.803137136

5% -2.863129362 0

10% -2.567616123 1.04E-26

USDT

1% -3.433974025 6.56E-06

5% -2.863140805 9.50E-28

10% -2.567622216 4.15E-29
Source: Researchers’ estimates
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Table	1	displays	 the	augmented	Dickey-Fuller	(ADF)	test	 t-statistics	and	
corresponding	p-values	for	cryptocurrency	time	series,	along	with	transformed	time	
series,	at	1%,	5%,	and	10%	significance	levels.	Both	BTC	and	ETH	time	series	
exhibit a unit root, indicating that these series are not constant. 

The	 p-value	 (<0.05)	 for	 BTC	 provides	 strong	 evidence	 against	 the	H0	
hypothesis	at	the	1-5%	significance	levels	for	both	the	linear	series	and	the	1st-order	
differenced	series.	Therefore,	the	H0	hypothesis	is	rejected	(indicating	consistency).	
However,	 the	 2nd-order	 differenced	 series	 has	 a	 p-value	 (>0.05)	 at	 the	 10%	
significance	level,	suggesting	weak	evidence	against	the	H0	hypothesis,	and	thus,	
the	H0	hypothesis	cannot	be	rejected	(indicating	instability).	For	ETH,	the	p-value	
(<0.05)	provides	strong	evidence	against	the	H0	hypothesis	at	the	5%	significance	
level,	as	the	1st-order	differenced	series	leads	to	the	rejection	of	the	H0	hypothesis	
(consistent).	 In	 the	 case	 of	both	BTC	and	ETH	cryptocurrencies,	 the	 optimal	
differencing	parameter	(using	n	diffs)	was	determined	using	pmdarima,	and	the	1st-
order	difference	was	identified	as	the	best-performing.

Cryptocurrencies	BTC	and	ETH	are	elucidated	using	the	ARIMA	model	
within the framework of a time series model. The accompanying graph illustrates that 
the	Autocorrelation	Function	(ACF)	values	for	both	BTC	and	ETH	fall	within	the	
95%	confidence	interval	(depicted	by	the	dotted	gray	line	or	remain	below	the	gray	
line)	for	lags	greater	than	0.	This	observation	affirms	the	absence	of	autocorrelation	
in our data. Typically, exchange rates from one day are highly dependent on those 
of	the	previous	day,	implying	a	dependence	on	their	predecessors.	Crossing	the	blue-
gray line of the confidence interval indicates statistical significance or autocorrelation.   

Table	1.	SARIMA	model	results	for	BTC	

Dep.Variable: Close No.Observations: 2600

Model: ARIMA(1,	1,	1) Log Likelihood 4737.254

Date: Tue, 01 Nov 2022 AIC -9468.509

Time: 7:54:57 BIC -9450.92

Sample: 9/19/2015 HQIC -9462.136

Covariance	Type:
org

coef std err z P>|z| [0.025] [0.975]

ar.L1 -0.3827 0.492 -0.778 0.437 -1.348 0.582

ma.L1 0.3562 0.496 0.718 0.473 -0.616 1.328

sigma2 0.0015 1.68E-05 90.954 0 0.001 0.002



126

Ljung-Box	(L1)	(Q): 0.04 Jarque-Bera	(JB): 13451.71

Prob(Q): 0.84 Prob(JB): 0

Heteroskedasticity	(H): 0.81 Skew: -0.73

Prob(H)	(two-sided): 0 Kurtosis: 14.05
Source: Researchers’ estimates 

The	outcomes	of	 the	SARIMA	model	 indicate	 that	 the	coefficients	of	 the	
Autoregressive	(AR)	and	Moving	Average	(MA)	terms	are	both	less	than	1	and	
statistically	significant,	with	p-values	below	0.05.	This	leads	to	the	selection	of	the	
SARIMA	model,	 specifically	ARIMA(1,1,1)	 for	BTC	and	ARIMA(1,1,1)	 for	
ETH,	as	the	most	suitable	models	for	forecasting.

Table	2.	SARIMAX	model	results	for	ETH

Dep.Variable: Close No.Observations: 1823

Model: ARIMA(1,	1,	1) Log Likelihood 2823.988

Date: Sat, 05 Nov 2022 AIC -5641.975

Time: 12:17:40 BIC -5625.452

Sample: 11/9/2017 HQIC -5635.88

Covariance	Type:
org

coef std err z P>|z| [0.025] [0.975]

ar.L1 -0.7623 0.129 -5.905 0 -1.015 -0.509

ma.L1 0.7172 0.139 5.155 0 0.444 0.99

sigma2 0.0026 3.69E-05 71.412 0 0.003 0.003

Ljung-Box	(L1)	(Q): 0.07 Jarque-Bera	(JB): 7293.11

Prob(Q): 0.8 Prob(JB): 0

Heteroskedasticity	(H): 0.83 Skew: -0.93

Prob(H)	(two-sided): 0.02 Kurtosis: 12.62

Source: Researchers’ estimates

	Now	that	the	BTC	and	ETH	time	series	data	are	preprocessed,	the	next	
step	involves	determining	the	optimal	p,	d,	q	values	for	the	ARIMA	model.	This	
is	accomplished	using	the	auto_arima	function,	which	calculates	the	most	suitable	
values	of	p,	d,	q	to	optimize	the	predictive	performance	of	the	ARIMA	model.	
The	optimal	predictive	model	is	identified	based	on	the	lowest	Akaike	Information	
Criterion	(AIC)	value.	After	employing	the	auto_arima	function	to	determine	optimal	
values,	the	best	model	for	predicting	the	BTC	rate	is	identified	as	ARIMA(0,1,0)
(0,0,0)[0]	with	an	intercept,	while	for	the	ETH	rate,	ARIMA(2,1,1)(0,0,0)[0]	
is identified as the optimal model for the dataset. 
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Table 2. SARIMAX model results for ETH 

Dep.Variable: Close No.Observations: 1823 
Model: ARIMA(1, 1, 1) Log Likelihood 2823.988 

Date: Sat, 05 Nov 2022 AIC -5641.975 

Time: 12:17:40 BIC -5625.452 
Sample: 11/9/2017 HQIC -5635.88 

Covariance Type: 
org 

coef std err z P>|z| [0.025] [0.975] 
ar.L1 -0.7623 0.129 -5.905 0 -1.015 -0.509 

ma.L1 0.7172 0.139 5.155 0 0.444 0.99 

sigma2 0.0026 3.69E-05 71.412 0 0.003 0.003 

Ljung-Box (L1) (Q): 0.07 Jarque-Bera (JB): 7293.11 
Prob(Q): 0.8 Prob(JB): 0 

Heteroskedasticity (H): 0.83 Skew: -0.93 
Prob(H) (two-sided): 0.02 Kurtosis: 12.62 

Source: Researchers' estimates 
 

 Now that the BTC and ETH time series data are preprocessed, the next step involves 
determining the optimal p, d, q values for the ARIMA model. This is accomplished using 
the auto_arima function, which calculates the most suitable values of p, d, q to optimize the 
predictive performance of the ARIMA model. The optimal predictive model is identified 
based on the lowest Akaike Information Criterion (AIC) value. After employing the 
auto_arima function to determine optimal values, the best model for predicting the BTC 
rate is identified as ARIMA(0,1,0)(0,0,0)[0] with an intercept, while for the ETH rate, 

ARIMA(2,1,1)(0,0,0)[0] is identified as the optimal model for the dataset.  

Figure 3 displays the actual values of BTC and the corresponding exchange rate predictions. 
Figure	3	displays	the	actual	values	of	BTC	and	the	corresponding	 

exchange rate predictions.
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 Figure 4 illustrates the real values of ETH alongside the corresponding rate predictions.  

Following the determination of the optimal p, d, q values for the ARIMA model, the 
time series proceeds to the training and testing phase. The dataset is divided into a 70:30 
ratio, with 70% used for training and the remaining 30% for testing the model. The model 
is executed, generating a model_prediction object for subsequent predictions. During this 
process, consider creating a visualization such as "Plot forecast vs. real," which includes 
the historical training set for better understanding and analysis.  

 Once the ARIMA model has been trained and future predictions have been tested, 
the np.exp(ARIMA.predicted_mean) function is employed. This function, with parameters 
including the starting value and length, is used to predict the next 5 days of BTC and ETH 
rates. The application of np.exp suggests that the predictions are based on the exponential 

transformation of the predicted mean.  

 Figure 5 illustrates the 5-day prediction of BTC closing rates. 

Figure 6 illustrates the 5-day prediction of ETH closing rates. 

The final step in the forecasting process involves evaluating the model's performance. 
This assessment can be conducted using various estimation methods, such as mean square 
error (MSE), mean absolute error (MAE), and root mean square error (RMSE). Figures 7 
and 8 present the assessments made using mean absolute percentage error (MAPE) and 
mean absolute scaled error (MASE). The evaluation includes: 

 Figure	4	illustrates	the	real	values	of	ETH	alongside	the	corresponding	rate	
predictions. 

Following	the	determination	of	the	optimal	p,	d,	q	values	for	the	ARIMA	
model, the time series proceeds to the training and testing phase. The dataset is 
divided	into	a	70:30	ratio,	with	70%	used	for	training	and	the	remaining	30%	
for	testing	the	model.	The	model	is	executed,	generating	a	model_prediction	object	
for	 subsequent	 predictions.	During	 this	 process,	 consider	 creating	 a	 visualization	
such	as	“Plot	forecast	vs.	real,”	which	includes	the	historical	training	set	for	better	
understanding and analysis. 

	Once	the	ARIMA	model	has	been	trained	and	future	predictions	have	been	
tested,	the	np.exp(ARIMA.predicted_mean)	function	is	employed.	This	function,	
with parameters including the starting value and length, is used to predict the 
next	5	days	of	BTC	and	ETH	rates.	The	application	of	np.exp	suggests	that	the	
predictions are based on the exponential transformation of the predicted mean. 
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 Figure	5	illustrates	the	5-day	prediction	of	BTC	closing	rates.

Figure 6	illustrates	the	5-day	prediction	of	ETH	closing	rates.

The	 final	 step	 in	 the	 forecasting	 process	 involves	 evaluating	 the	 model’s	
performance. This assessment can be conducted using various estimation methods, 
such	as	mean	square	error	(MSE),	mean	absolute	error	(MAE),	and	root	mean	
square	error	(RMSE).	Figures	7	and	8	present	the	assessments	made	using	mean	
absolute	percentage	error	(MAPE)	and	mean	absolute	scaled	error	(MASE).	The	
evaluation	includes:

Figure	7	displays	the	results	of	the	evaluation	for	BTC	using	Mean	Absolute	
Percentage	Error	(MAPE)	and	Mean	Absolute	Scaled	Error	(MASE).

Figure	8	displays	the	results	of	the	evaluation	for	ETH	using	Mean	
Absolute	Percentage	Error	(MAPE)	and	Mean	Absolute	Scaled	Error	

(MASE).
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Conclusion
In	 this	 research,	 the	 objective	 is	 to	 forecast	 the	 prices	 of	 major	 market	

players,	BTC	 and	ETH,	 utilizing	ARIMA	and	SARIMAX	models.	 Initially,	
the	 data	 was	 examined	 and	 stabilized	 to	 ensure	 its	 stability.	 According	 to	 the	
study	results,	87	percent	of	short-term	exchange	rate	movements	were	accurately	
predicted.	Furthermore,	the	evaluation	of	BTC	and	ETH	cryptocurrencies	involves	
assessing	mean	absolute	percentage	error	(MAPE)	and	mean	absolute	scaled	error	
(MASE).	The	irregular	patterns	in	Bitcoin’s	price	movements	present	challenges	
in	determining	an	optimal	ARIMA	model.	A	model	effective	for	forecasting	in	one	
time	range	may	not	necessarily	perform	well	in	the	subsequent	time	range.	There	
are plans to incorporate more parameters and explore additional time series models 
to enhance the accuracy of predicting Bitcoin prices.
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