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КРИПТОВАЛЮТЫН ХАНШИЙГ ARIMA БОЛОН SARIMAX 
ЗАГВАРААР ТААМАГЛАХ НЬ

Г.Лхамдулам*,  С.Цолмон**

Хураангуй: Энэхүү судалгааны зорилго нь хугацаан цуваан шинжилгээнд 
хамгийн өргөн ашигладаг ARIMA болон SARIMAX загварт тулгуурлан 
зарим криптовалютын ханшийг урьдчилан таамаглах явдал юм. Эдгээр 
загваруудын параметрийг тодорхойлохдоо автокорреляцийн функц 
(ACF) болон хэсэгчилсэн автокорреляцийн функц (PACF) шинжилгээг 
хийсэн. Судалгаандаа бид Finance.yahoo.com болон CoinMarketCup.
com веб сайтаас 2015 оны 9 сарын 9-өөс 2022 оны 10 сарын 31-
ны өдрийг хүртэлх 2600 өдрийн мэдээлэлд тулгуурлан, python 3.10 
программ дээр боловсруулалт хийсэн. Хугацааны хоцролтын оновчтой 
зэргийг тогтоосны дараа биткойны ханшийг таамаглах хамгийн оновчтой 
загвар нь ARIMA (0,1,0)(0,0,0)[0], харин эфириумийн ханшийн хувьд 
ARIMA(2,1,1)(0,0,0)[0] загвар нь хамгийн бага алдаатай гарсан байна.  
Түлхүүр үгс: машин сургалт, хугацаан цуваа, криптограф, биткойн, 
эфириум
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AND SARIMAX MODELS

G.Lkhamdulam*,  S.Tsolmon**

Abstract: The objective of this study is to forecast the exchange rates of 
select cryptocurrencies using the widely recognized ARIMA and SARIMAX 
models for time series analysis. Autocorrelation function (ACF) and partial 
autocorrelation function (PACF) analyses were conducted to ascertain the 
parameters for these models. Our research is grounded in a dataset spanning 
2600 days sourced from Finance.yahoo.com and the CoinMarketCap.com 
website, covering the period from September 9, 2015, to October 31, 2022. 
The data was processed using Python 3.10. Upon identifying the optimal 
time lag, the preferred model for predicting Bitcoin prices is ARIMA (0,1,0)
(0,0,0)[0], while for Ethereum, the optimal model is ARIMA(2,1,1)
(0,0,0)[0], demonstrating the lowest error.  
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Introduction 
 Cryptocurrencies represent virtual and electronic forms of currency, constituting 

a subset of virtual currencies secured through cryptography (Ivanchenko, 2021). 
Typically, cryptocurrencies employ intricate cryptographic algorithms, necessitating 
a network of interconnected computers to execute complex mathematical operations 
(Chowdhury, 2019). Notably, these currencies operate in an unregulated 
environment, rendering them highly volatile (Ivanchenko, 2021).

The allure of this market lies in the fact that the technology employed in 
cryptocurrency mining offers a viable alternative to conventional markets, such as 
gold. Additionally, cryptocurrencies stand out from traditional currencies as there is 
incomplete information available about cash transactions and the total currency in 
circulation. While forecasting cryptocurrency price movements is challenging, it is 
not deemed impossible (Valencia, 2019). 

In recent years, alongside the utilization of certain cryptocurrencies as official 
currencies and for international payments, there has been a surge in investor interest 
in capitalizing on exchange rate differentials. Consequently, a considerable amount 
of research has been conducted in the realm of predicting cryptocurrency prices 
(Ivanchenko, 2021).

The study will further investigate the precision of predicting Bitcoin prices. 
One-variable dynamic models, specifically ARIMA, are employed for time series 
modeling, utilizing this approach to assess and forecast exchange rates. Through this 
model, we can discern which algorithm exhibits a lesser deviation from the actual 
value, enhancing the accuracy of predicting and forecasting short-term exchange 
rate prices.

Cryptocurrency and Blockchain technology
Cryptocurrency is a digital currency created for transactional purposes across 

computer networks. It operates as a decentralized and independent form of currency, 
free from the oversight and control of central entities such as governments or banks. 
The reluctance of central authorities to internationally recognize cryptocurrencies 
is rooted in the concern that national currencies might experience a short-term 
weakening against these digital counterparts. (niss.gov.mn, 2018). 

Cryptocurrencies lack a physical form, unlike traditional paper money, and are 
typically not governed by a central authority. In contrast to Central Bank Digital 
Currencies (CBDCs), cryptocurrencies commonly operate with decentralized control. 
A cryptocurrency is typically deemed centralized if it is generated or created prior to 
issuance, or if it is issued by a singular entity. In the case of decentralized control, 
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each cryptocurrency functions on a blockchain or distributed ledger technology, 
serving as a public database for financial transactions (Reaz Chowdhury, M. Arifur 
Rahman , M. Sohel Rahman ,M.R.C. Mahdy, 2015).

The inaugural cryptocurrency, Bitcoin, was introduced as open-source software 
in 2009. By March 2022, the market boasted over 9,000 cryptocurrencies, with 
more than 70 of them commanding a market capitalization surpassing $1 billion. 
Various parameters of the four types of openly traded cryptocurrencies, including 
market supply volume, 24-hour transactions, new block creation time, and exchange 
rates, exhibit distinct trading patterns in the market. The new block creation time, 
reward amount, and algorithmic change procedures differ for each cryptocurrency. 
Additionally, the speed of hash checks is determined by the computing power 
of miners in the network. Detailed explanations for each of these currencies are 
provided below.

Moreover, the blockchain functions as a mechanism employing cryptography 
and encryption, utilizing a specialized mathematical algorithm for the creation and 
verification of a progressively expanding data structure. Essentially, new information 
is added without deleting previous data, forming a sequential chain of “transaction 
blocks” (gratanet.com, 2020).

Blockchain 1.0 is expected to serve as a fundamental application for money 
transfers, remittances, and digital payment systems, akin to conventional cash 
or cryptocurrencies. Furthermore, Blockchain 2.0 extends beyond simple money 
transactions, evolving into a platform capable of managing a wider array of financial 
derivatives, including stocks, bonds, mortgages, futures, smart assets, and certificates.

The adoption of Blockchain 3.0 represents a rapid and cost-effective 
integration of blockchain technology, facilitating competition with centralized financial 
institutions. Its impact extends beyond the financial sector to enhance data security 
in the health sector, utilizing distributed technology for improved data storage and 
transmission. In the logistics industry, it enhances control over goods and products, 
while in the electoral system, it introduces transparency. This adoption aims to 
increase accessibility while simultaneously fortifying security (learn.bybit.com).

Being a cryptocurrency, it operates without regulation from governments or 
organizations, and its information is encrypted with a widely distributed private key 
within the network. While it shares the foundation of blockchain technology with 
other cryptocurrencies, its programming sets it apart. 
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Research design and methodology
The data utilized in this study were gathered from Finance.yahoo.com 

and CoinMarketCap.com, covering daily data from September 9, 2015, to 
October 31, 2022, for the peak market values of Bitcoin (BTC) and Ethereum 
(ETH), two prominent cryptocurrencies. In forecasting the exchange rates for 
these cryptocurrencies, we employed ARIMA (Autoregressive Integrated Moving 
Average) and SARIMAX (Seasonal Auto-Regressive Integrated Moving Average 
with eXogenous factors) models, commonly used in time series analysis, through the 
Python 3.10 programming language.

The ARIMA model was initially introduced in Peter Whittle’s thesis, 
“Hypothesis Testing in Time Series Analysis.” It is widely regarded as the most 
popular method for financial forecasting. Its recognition further expanded in 1971 
when it was prominently featured in a book by George E.P. Box and Gwilym 
Jenkins.

ARIMA models are segmented into Autoregressive (AR) and Moving 
Average (MA) components. The Autoregressive (AR) model operates on the 
principle of regressing the target variable on its past values, with the AR model 
equation taking a lagged form.

Y is expressed as a linear function of the preceding n values, wherein the value 
of n can be replaced by coefficients B0 and B1. These beta values are determined 
during the model fitting process. The resulting equation can be employed to forecast 
future values by making appropriate adjustments to the equation.

  [1]

                 [2]

A component of ARIMA involves the process of data stationarity, which 
is applied when the time series data exhibits non-stationarity, as depicted in the 
equation below. [3] This process assumes that future values of Y are linear functions 
of its past changes and that the values of Y must exhibit a constant mean and 
variance.
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ARIMA(𝑝,𝑑,𝑞) serves as the standard notation for representing ARIMA 
models. These parameters can be substituted with integers to define the specific 
model type. “p” signifies the number of lags of Y included in the model, “d” 
represents the order of differencing needed to achieve data stationarity, and “q” 
denotes the MA order, which is the number of backward prediction errors (Chahat, 
Tandon; Sanjana, Revankar; Hemant, Palivel, 2021).

Research results
The selected cryptocurrencies, Bitcoin (BTC) and Ethereum (ETH), 

are employed in forecasting cryptocurrency exchange rates through a sequential 
ARIMA model. This approach assumes that the daily exchange rate is dependent 
on its preceding value and a random error. Logarithms were applied to exhibit 
linearity in the analysis.  
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𝑌𝑌 = 𝐵𝐵0 + 𝐵𝐵1 ∗ 𝑌𝑌−lag⁡ 1 + 𝐵𝐵2∗𝑌𝑌−lag⁡ 2 + ⋯+ 𝐵𝐵𝑛𝑛 ∗ 𝑌𝑌−lagn  [1] 

𝑌𝑌−forward1 = 𝐵𝐵0 + 𝐵𝐵1 ∗ 𝑌𝑌 + 𝐵𝐵2∗𝑌𝑌 − lag⁡ 1
+⋯𝐵𝐵𝑛𝑛∗𝑌𝑌−lag⁡(𝑛𝑛 − 1)                  [2] 

A component of ARIMA involves the process of data stationarity, which is applied 
when the time series data exhibits non-stationarity, as depicted in the equation below. [3] 
This process assumes that future values of Y are linear functions of its past changes and 
that the values of Y must exhibit a constant mean and variance. 

⁡𝑌𝑌−forward 1 − 𝑌𝑌 = 𝐵𝐵0 + 𝐵𝐵1 ∗ (𝑌𝑌 − 𝑌𝑌−lag 1)
+𝐵𝐵2∗(𝑌𝑌−lag 1 − 𝑌𝑌−lag 2) + ⋯ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡[3]⁡⁡⁡ 

ARIMA(𝑝𝑝,𝑑𝑑,𝑞𝑞) serves as the standard notation for representing ARIMA models. 
These parameters can be substituted with integers to define the specific model type. "p" 
signifies the number of lags of Y included in the model, "d" represents the order of 
differencing needed to achieve data stationarity, and "q" denotes the MA order, which is 
the number of backward prediction errors (Chahat, Tandon; Sanjana, Revankar; Hemant, 
Palivel, 2021). 

Research results 
The selected cryptocurrencies, Bitcoin (BTC) and Ethereum (ETH), are employed in 

forecasting cryptocurrency exchange rates through a sequential ARIMA model. This 
approach assumes that the daily exchange rate is dependent on its preceding value and a 
random error. Logarithms were applied to exhibit linearity in the analysis.   

Figure 1 illustrates the price movements of Bitcoin and Ethereum. 
 

Figure 1 illustrates the price movements of Bitcoin and Ethereum.

 Assessing the stability of the series involves examining whether the 
autocorrelation function has manifested in the time series, forming the 
basis for the reliability of the evaluation. Consequently, the stability of the 
exchange rate series for selected cryptocurrencies such as BTC and ETH is 
examined and presented in Figure 2.
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 Assessing the stability of the series involves examining whether the autocorrelation 
function has manifested in the time series, forming the basis for the reliability of the 
evaluation. Consequently, the stability of the exchange rate series for selected 
cryptocurrencies such as BTC and ETH is examined and presented in Figure 2. 

Figure 2 displays the outcomes of the rate stability testing.  

To evaluate the series stability, two hypotheses were formulated: the null hypothesis 
(H0) positing "There is no instability in the series," and the alternative hypothesis asserting 
"There is instability in the series." These hypotheses were tested using the Augmented 
Dickey-Fuller test (ADF). 

Table 1 presents the results of the Augmented Dickey-Fuller (ADF) test 
Time series   t-Statistic p-Value 

test critical value 

BTC 
1% -3.432868573 0.21 
5% -2.862652711 0 

10% -2.567362336 2.82E-29 

ETH 
1% -3.433948103 0.803137136 
5% -2.863129362 0 

10% -2.567616123 1.04E-26 

USDT 
1% -3.433974025 6.56E-06 
5% -2.863140805 9.50E-28 

10% -2.567622216 4.15E-29 

Source: Researchers' estimates 

Figure 2 displays the outcomes of the rate stability testing. 

To evaluate the series stability, two hypotheses were formulated: the null 
hypothesis (H0) positing “There is no instability in the series,” and the alternative 
hypothesis asserting “There is instability in the series.” These hypotheses were 
tested using the Augmented Dickey-Fuller test (ADF).

Table 1 presents the results of the Augmented Dickey-Fuller (ADF) test

Time series t-Statistic p-Value

test critical value

BTC

1% -3.432868573 0.21

5% -2.862652711 0

10% -2.567362336 2.82E-29

ETH

1% -3.433948103 0.803137136

5% -2.863129362 0

10% -2.567616123 1.04E-26

USDT

1% -3.433974025 6.56E-06

5% -2.863140805 9.50E-28

10% -2.567622216 4.15E-29
Source: Researchers’ estimates
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Table 1 displays the augmented Dickey-Fuller (ADF) test t-statistics and 
corresponding p-values for cryptocurrency time series, along with transformed time 
series, at 1%, 5%, and 10% significance levels. Both BTC and ETH time series 
exhibit a unit root, indicating that these series are not constant. 

The p-value (<0.05) for BTC provides strong evidence against the H0 
hypothesis at the 1-5% significance levels for both the linear series and the 1st-order 
differenced series. Therefore, the H0 hypothesis is rejected (indicating consistency). 
However, the 2nd-order differenced series has a p-value (>0.05) at the 10% 
significance level, suggesting weak evidence against the H0 hypothesis, and thus, 
the H0 hypothesis cannot be rejected (indicating instability). For ETH, the p-value 
(<0.05) provides strong evidence against the H0 hypothesis at the 5% significance 
level, as the 1st-order differenced series leads to the rejection of the H0 hypothesis 
(consistent). In the case of both BTC and ETH cryptocurrencies, the optimal 
differencing parameter (using n diffs) was determined using pmdarima, and the 1st-
order difference was identified as the best-performing.

Cryptocurrencies BTC and ETH are elucidated using the ARIMA model 
within the framework of a time series model. The accompanying graph illustrates that 
the Autocorrelation Function (ACF) values for both BTC and ETH fall within the 
95% confidence interval (depicted by the dotted gray line or remain below the gray 
line) for lags greater than 0. This observation affirms the absence of autocorrelation 
in our data. Typically, exchange rates from one day are highly dependent on those 
of the previous day, implying a dependence on their predecessors. Crossing the blue-
gray line of the confidence interval indicates statistical significance or autocorrelation.   

Table 1. SARIMA model results for BTC 

Dep.Variable: Close No.Observations: 2600

Model: ARIMA(1, 1, 1) Log Likelihood 4737.254

Date: Tue, 01 Nov 2022 AIC -9468.509

Time: 7:54:57 BIC -9450.92

Sample: 9/19/2015 HQIC -9462.136

Covariance Type:
org

coef std err z P>|z| [0.025] [0.975]

ar.L1 -0.3827 0.492 -0.778 0.437 -1.348 0.582

ma.L1 0.3562 0.496 0.718 0.473 -0.616 1.328

sigma2 0.0015 1.68E-05 90.954 0 0.001 0.002
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Ljung-Box (L1) (Q): 0.04 Jarque-Bera (JB): 13451.71

Prob(Q): 0.84 Prob(JB): 0

Heteroskedasticity (H): 0.81 Skew: -0.73

Prob(H) (two-sided): 0 Kurtosis: 14.05
Source: Researchers’ estimates 

The outcomes of the SARIMA model indicate that the coefficients of the 
Autoregressive (AR) and Moving Average (MA) terms are both less than 1 and 
statistically significant, with p-values below 0.05. This leads to the selection of the 
SARIMA model, specifically ARIMA(1,1,1) for BTC and ARIMA(1,1,1) for 
ETH, as the most suitable models for forecasting.

Table 2. SARIMAX model results for ETH

Dep.Variable: Close No.Observations: 1823

Model: ARIMA(1, 1, 1) Log Likelihood 2823.988

Date: Sat, 05 Nov 2022 AIC -5641.975

Time: 12:17:40 BIC -5625.452

Sample: 11/9/2017 HQIC -5635.88

Covariance Type:
org

coef std err z P>|z| [0.025] [0.975]

ar.L1 -0.7623 0.129 -5.905 0 -1.015 -0.509

ma.L1 0.7172 0.139 5.155 0 0.444 0.99

sigma2 0.0026 3.69E-05 71.412 0 0.003 0.003

Ljung-Box (L1) (Q): 0.07 Jarque-Bera (JB): 7293.11

Prob(Q): 0.8 Prob(JB): 0

Heteroskedasticity (H): 0.83 Skew: -0.93

Prob(H) (two-sided): 0.02 Kurtosis: 12.62

Source: Researchers’ estimates

 Now that the BTC and ETH time series data are preprocessed, the next 
step involves determining the optimal p, d, q values for the ARIMA model. This 
is accomplished using the auto_arima function, which calculates the most suitable 
values of p, d, q to optimize the predictive performance of the ARIMA model. 
The optimal predictive model is identified based on the lowest Akaike Information 
Criterion (AIC) value. After employing the auto_arima function to determine optimal 
values, the best model for predicting the BTC rate is identified as ARIMA(0,1,0)
(0,0,0)[0] with an intercept, while for the ETH rate, ARIMA(2,1,1)(0,0,0)[0] 
is identified as the optimal model for the dataset. 
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 Now that the BTC and ETH time series data are preprocessed, the next step involves 
determining the optimal p, d, q values for the ARIMA model. This is accomplished using 
the auto_arima function, which calculates the most suitable values of p, d, q to optimize the 
predictive performance of the ARIMA model. The optimal predictive model is identified 
based on the lowest Akaike Information Criterion (AIC) value. After employing the 
auto_arima function to determine optimal values, the best model for predicting the BTC 
rate is identified as ARIMA(0,1,0)(0,0,0)[0] with an intercept, while for the ETH rate, 

ARIMA(2,1,1)(0,0,0)[0] is identified as the optimal model for the dataset.  

Figure 3 displays the actual values of BTC and the corresponding exchange rate predictions. 
Figure 3 displays the actual values of BTC and the corresponding  

exchange rate predictions.
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 Figure 4 illustrates the real values of ETH alongside the corresponding rate predictions.  

Following the determination of the optimal p, d, q values for the ARIMA model, the 
time series proceeds to the training and testing phase. The dataset is divided into a 70:30 
ratio, with 70% used for training and the remaining 30% for testing the model. The model 
is executed, generating a model_prediction object for subsequent predictions. During this 
process, consider creating a visualization such as "Plot forecast vs. real," which includes 
the historical training set for better understanding and analysis.  

 Once the ARIMA model has been trained and future predictions have been tested, 
the np.exp(ARIMA.predicted_mean) function is employed. This function, with parameters 
including the starting value and length, is used to predict the next 5 days of BTC and ETH 
rates. The application of np.exp suggests that the predictions are based on the exponential 

transformation of the predicted mean.  

 Figure 5 illustrates the 5-day prediction of BTC closing rates. 

Figure 6 illustrates the 5-day prediction of ETH closing rates. 

The final step in the forecasting process involves evaluating the model's performance. 
This assessment can be conducted using various estimation methods, such as mean square 
error (MSE), mean absolute error (MAE), and root mean square error (RMSE). Figures 7 
and 8 present the assessments made using mean absolute percentage error (MAPE) and 
mean absolute scaled error (MASE). The evaluation includes: 

 Figure 4 illustrates the real values of ETH alongside the corresponding rate 
predictions. 

Following the determination of the optimal p, d, q values for the ARIMA 
model, the time series proceeds to the training and testing phase. The dataset is 
divided into a 70:30 ratio, with 70% used for training and the remaining 30% 
for testing the model. The model is executed, generating a model_prediction object 
for subsequent predictions. During this process, consider creating a visualization 
such as “Plot forecast vs. real,” which includes the historical training set for better 
understanding and analysis. 

 Once the ARIMA model has been trained and future predictions have been 
tested, the np.exp(ARIMA.predicted_mean) function is employed. This function, 
with parameters including the starting value and length, is used to predict the 
next 5 days of BTC and ETH rates. The application of np.exp suggests that the 
predictions are based on the exponential transformation of the predicted mean. 
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 Figure 5 illustrates the 5-day prediction of BTC closing rates.

Figure 6 illustrates the 5-day prediction of ETH closing rates.

The final step in the forecasting process involves evaluating the model’s 
performance. This assessment can be conducted using various estimation methods, 
such as mean square error (MSE), mean absolute error (MAE), and root mean 
square error (RMSE). Figures 7 and 8 present the assessments made using mean 
absolute percentage error (MAPE) and mean absolute scaled error (MASE). The 
evaluation includes:

Figure 7 displays the results of the evaluation for BTC using Mean Absolute 
Percentage Error (MAPE) and Mean Absolute Scaled Error (MASE).

Figure 8 displays the results of the evaluation for ETH using Mean 
Absolute Percentage Error (MAPE) and Mean Absolute Scaled Error 

(MASE).
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Conclusion
In this research, the objective is to forecast the prices of major market 

players, BTC and ETH, utilizing ARIMA and SARIMAX models. Initially, 
the data was examined and stabilized to ensure its stability. According to the 
study results, 87 percent of short-term exchange rate movements were accurately 
predicted. Furthermore, the evaluation of BTC and ETH cryptocurrencies involves 
assessing mean absolute percentage error (MAPE) and mean absolute scaled error 
(MASE). The irregular patterns in Bitcoin’s price movements present challenges 
in determining an optimal ARIMA model. A model effective for forecasting in one 
time range may not necessarily perform well in the subsequent time range. There 
are plans to incorporate more parameters and explore additional time series models 
to enhance the accuracy of predicting Bitcoin prices.
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