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Analysis	often	requires	the	use	of	numbers	that	may	be	understood	as	being	
drawn	 from	 a	measurement	 scale.	This	 is	 true,	 for	 example,	with	 the	 statement	
that	distance	equals	velocity	times	time.	In	that	equation,	distance	is	measured	by	
length	taken	from	a	scale	such	as	miles;	velocity	from	a	scale	defined	by,	say,	miles	
per	hour;	and	time	from	a	scale	that	counts	instants	or	periods.	Those	three	scales	
are	generally	characterized	as	 ratio	 scales.	 In	Economics,	 ratio	 scales	along	with	
two	other	kinds	of	scales,	ordinal	and	cardinal	(or	 interval)	scales,	have	become	
important.	These	scales	may	be	characterized	as	follows:

The	current	mathematical	notion	of	ordinality	dates	to	the	1950s	(Narens.L.,	
1985).	It	is	based	on	the	idea	that	ordinal	numbers	emerge	as	values	that	are	are	
located	in	the	image	of	some	order-preserving	function	(ordinal	scale).	That	function	
is	defined	on	an	abstract	space,	call	it	D,	on	which	a	reflexive,	transitive,	and	total	
(complete)	relation	ordering	its	elements	according	to	a	specific	property	is	imposed,	
and	whose	property-ordering	 is	preserved	 in	 the	 function’s	values.	Were	D with 
such	an	ordering	to	be	specified	independently,	it	can	be	shown	that	such	an	order-
preserving	 function	exists	 if	and	only	 if	 the	 interval	 topology	 for	 the	equivalence	
classes	under	the	ordering	has	a	countable	base	(Pfanzagl.J.,	1971).	The	order-
preserving function may be said to be a representation of the underlying ordering. 
And any increasing transformation of the numbers in the range of the function also 
represents	that	ordering	or,	in	other	words,	is	a	different	ordinal	scale	that	preserves	
the original ordering in the transformed function values. Without additions to this 
framework,	it	is	not	legitimate	to	perform	arithmetic	operations	with	ordinal	numbers	
because	there	is	no	underlying	basis	for	doing	so.	Thus	the	derivatives	of	a	function	
whose range consists of ordinal numbers cannot be calculated since their derivations 
require	the	use	of	subtraction	and	division.

The	only	way	to	introduce	the	possibility	of	arithmetic	manipulation	of	ordinal	
numbers	is	to	add	to	the	ordering	structure	built	on	the	underlying	space.	This	may	
be accomplished by introducing an additive composition operation1 on the latter 
along	with	the	requirements	that	D is connected and contains at least two elements. 
The	added	structure	turns	the	ordinal	scale	into	a	cardinal	scale	(Pfanzagl.J.,	1971).	
The	only	increasing	transformations	of	scale	that	can	be	applied	while	maintaining	
on D both the ordering and compositional constructions in a cardinal representation 
are	linear.	Ratio	scales	are	cardinal	scales	having	the	further	feature	that	the	position	
of the zero does not change under all admissible transformations of scale.2 In the 

1	 A	 composition	 operations	 is	 additive	 if	 it	 is	 associative,	 commutative,	 cancellable,	 and	 continuous	 in	 each	
variable separately.

2	 For	example,	temperature	is	a	measured	on	a	cardinal,	but	not	ratio	scale	because	the	zero	changes	in	moving	
from,	say,	Fahrenheit	to	centigrade.	Weight	is	measured	on	a	ratio	scale	since	the	zero	is	the	same	regardless	
of	whether	measurement	is	in	terms	of	pounds	or	kilograms.
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case	of	ratio	scales,	only	dilation	transformations	of	scale	are	admissible.3 
These	 concepts	may	 be	 illustrated	 in	 terms	 of	 pieces	 of	 chalk.	One	 of	 the	

properties	 of	 chalk	 is	 that	 each	 piece	 has	 “longness”	 associated	 with	 it.	 That	
longness	orders	the	pieces	of	chalk	in	a	reflexive,	transitive	and	total	way	and	is	
measured	by	the	order-preserving	function	length	in,	say,	inches.		The	length	scale	
is	ordinal	since	a	piece	of	chalk	with	more	longness	has	greater	length	associated	
with it. Also associated with longness is an additive composition operation identified 
on D	 as	 the	placing	of	 individual	pieces	 end	 to	 end.	Thus	 the	 longness	of	 the	
combination	of	any	two	pieces	of	chalk	is	measured	as	the	sum	of	the	lengths	of	the	
individual	pieces	in	it.	That	is,	the	length	scale	is	cardinal.	It	is	also	a	ratio	scale	
since	transforming	the	scale	 into,	say,	centimeters	 leaves	the	position	of	the	zero	
unchanged.	Such	are	the	basic	ideas	characterizing	the	current	mathematical	notions	
of	ordinal,	cardinal,	and	ratio	scales.

However,	there	is	an	older	concept	of	ordinality	that	is	defined	similarly	to	that	
described above except that it permits arithmetic operations with ordinal numbers 
while	 ignoring	the	underlying	compositional	requirements	necessary,	 in	the	1950s	
approach,	to	perform	them.	From	this	alternative	perspective	ordinal	numbers	are	
also	seen	as	located	in	the	range	of	an	order-preserving	function	and	may	be	added,	
subtracted,	multiplied,	and	divided	irrespective	of	any	composition	operation	that	
might be defined to justify those manipulations. All increasing transformation of 
scale	(not	only	the	linear	ones)	can	be	applied	to	ordinal	numbers	without	disrupting	
the underlying ordering on D and without losing the ability to perform arithmetic 
operations	on	the	transformed	numbers.	In	this	context,	any	function	whose	values	
are ordinal can be differentiated provided it has the right smoothness properties. 
Such	an	‘old	fashion’	notion	of	ordinality	persisted	before	it	was	replaced	by	the	
more	modern	approach	of	the	1950s	(Stevens.S.S,	Friday,	June	7,	1946).

Now,	 explicitly	 or	 implicitly,	 old	 fashion	 ordinality	 entered	 the	 economics	
theoretical	literature	long	before	the	1950s.	As	far	back	as	1892,	Fisher	[2,	pp.	
31-33]	 realized	 that	 applying	 increasing	 transformations	 to	 the	 ordinal	 values	 of	
a function with a maximum value does not change the element in the domain 
over	which	 the	maximum	occurs.	Both	Hicks	[4,	pp.	306-307]	and	Samuelson	
[11,	 p.	 94]	 base	 their	 respective	 1939	 and	 1958	 discussions	 of	 the	 theory	 of	
consumer	demand	on	twice,	continuously	differentiable,	(old	fashion)	ordinal	utility	
functions	 (i.e.,	 functions	 with	 old	 fashion	 ordinal	 function	 values	 and	 domains	
consisting	of	vectors	of	ratio	measured	quantities	of	commodities)	and	the	method	
of Lagrange multipliers. And this old fashion approach to ordinality survives in the 
Economics	 literature	 to	 this	 day	 (Donald	W.	Katzner,	May	2014).	The	more	
3	 The	linear	function	  where a and b are constant is called a dilation when 
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modern approach of the 1950s does not seem to have caught on in any general way 
among	economists.	In	the	remainder	of	this	paper,	“ordinal	scale”	will	refer	to	the	
old	fashion	economist	notion	while	“cardinal”	and	“ration	scales”	will	denote	the	
mathematical conceptualizations as described above.

In	many	analyses,	the	choice	of	which	scales	to	use	(i.e.,	whether	to	employ,	
say,	inches	or	centimeters	to	measure	length)	is	arbitrary.	And	in	most	of	these	the	
selections	made	do	not	matter.	This	is	certainly	true	of	the	ordinal	utility	functions	
appearing	in	the	theory	of	consumer	demand	mentioned	above.	But,	as	will	be	seen,	
the	 lack	of	consequences	does	not	hold	up	everywhere.	 In	particular,	 the	choice	
of	measurement	scales	does	make	an	important	difference	when	a	function	whose	
argument can be measured only on an ordinal scale is optimized. It should be noted 
that	while	the	term	‘optimization’	covers	both	maximization	and	minimization	with	
and	without	constraints,	the	following	focuses	only	on	unconstrained	versions	of	one	
or the other as indicated by the context of the issue under discussion.

To	see	what	is	involved,	it	is	necessary	to	consider	in	detail	how	changes	in	
scale	affect	the	outcome	of	the	optimization	process.	This	is	the	subject	matter	of	
the	next	 two	sections.	Section	 I	provides	a	concrete	example	of	how	changes	 in	
scale of a ratio measured variable with respect to which a function is minimized 
affects	the	result	of	the	minimization.	In	this	illustration,	the	scale	change	requires	
a corresponding adjustment of the function to be minimized in order to obtain a 
consistent	outcome.	Section	II	considers	the	problem	more	generally.	It	is	here	that	
the difficulty with respect to ordinality is discussed. Although most of that discussion 
is	stated	in	terms	of	ordinal	scales,	much	of	it	also	applies	when	cardinal	or	ratio	
scales are in use as long as the restrictions on the nature of admissible scale changes 
(linear	in	the	case	of	cardinal	scales	and	dilations	for	ratio	scales)	are	respected.	
Section	III	considers	two	ways	around	the	ordinality	problem	raised	in	Section	II.	
And	Section	 IV	provides	 an	 example	 in	 economics	 in	which,	 if	 a	 variable	with	
respect	to	which	a	function	is	to	be	maximized	is	taken	to	be	ordinal	(and	a	case	
can	be	made	for	that	ordinality),	then	the	analysis	based	on	that	maximization	runs	
into difficulty.

I
Suppose	4 there are two ways to ride a bicycle between points A and D. One 

way	is	to	follow	a	straight	road	from	A	to	point	B,	and	then	a	perpendicular	straight	
road	to	D	(see	Figure	1).	The	alternative	is	to	cut	across	a	field	from	A and pursue 
a straight line to a point C on the road between B and D,	and	then	continue	on	
the latter road to D.	The	distance	between	A and B	is	8	miles,	and	that	between	
B and D is 16 miles. Assume the cyclist’s average speed on roads is 10 miles per 
4	 This	example	is	based	on	A.	Svirin	[13,	Example	18].
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hour,	while	that	across	the	field	is	only	6	miles	per	hour.	Suppose	the	cyclist	wants	
to choose C,	which	can	be	located	anywhere	between	B and D,	to	minimize	the	
riding time between A and B.

In	 this	 example,	 longness	 is	 measured	 by	 distance	 in	 miles.	 With	  
representing	 the	 distance	 between	 B	 and	 C,	 the	 distance	 between	 A and C,	
obtained	 from	 the	Pythagorean	Theorem	 is	 .	Using	 the	 formula	 time	
equals	distance	divided	by	velocity,	the	time	required	to	bicycle	form	A to B is the 
sum of the times needed from A to C and C to D:

Differentiating with respect to x,

and	equating	that	derivative	to	zero	gives	the	time-minimizing	distance5 from B 
to C as 	The	minimum	time	is	  Denote the underlying longness 
between B to C which is measured as 6 miles by . 

Now let the scale on which longness is measured be changed by dilation from 
miles	 to	half-miles.	Then	x	denotes	 the	distance	between	B	and	C	 in	modified	
units	(half-miles),	the	distance	between	A and B	becomes	16,	that	between	B and 
D	expands	to	32,	and	that	between	A and C is written as .	The	time	
function becomes

and	upon	setting	the	derivative	to	zero,	  the minimum time remains 
unchanged at 	 Represent	 the	 underlying	 longness	 between	B and 
C in the context of the scale change by .	Since	 the	 transformed	value	of	  
originally measured as 	under	the	scale	change	to	half-mile	units	is	 ,	
it is clear that .	Thus	the	change	in	scale	does	not	alter	the	outcome	of	the	
minimization	problem.	This	happens	because	changing	the	scale	on	which	longness	
is measured is accompanied by corresponding modifications in the parameters of 
T that adjust that function to express the relation that T represents with respect 
to	the	new	measure.	Obviously,	T has to be characterized in sufficiently specific 
form	to	be	able	to	make	the	necessary	adjustment.	But	if	longness	were	measured	
only on an ordinal scale and if T	were	not	defined	with	enough	precision,	 such	
modification	might	not	be	possible,	and	it	then	would	not	necessarily	follow	that	
5	 It	is	easily	verified	that	the	second-order	derivative	  for all .
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. And even if T	were	specified	in	sufficient	detail,	it	is	still	possible,	as	will	
be	seen	subsequently,	that	applying	certain	transformations	of	scale,	a	value	of	x 
that minimizes T would not exist and 	could	not	then	be	determined.	The	matter	
will	be	taken	up	in	the	next	section	in	the	context	of	maximization.

II
To	be	concrete,	let	e	be	the	variable	“effort”	ranging	over	some	non-denumerably	

infinite space E	which	contains	distinct	non-numerical,	written	paragraphs	describing	
the	various	forms	of	“effort”	that	might	arise	in	a	particular	study.6	The	question	of	
which	scale	(ordinal,	cardinal,	or	ratio)	is	appropriate	to	use	in	measuring	effort	is	
not	considered	here.	The	consequences	of	using	one	over	the	other	will	be	discussed	
in	due	course.	Let	there	be	a	reflexive,	transitive,	and	total	ordering	relation	defined	
on E	 according	 to	 the	 “strength	 of	 effort”	 thought	 to	 arise	 in	 each	 description	
(variable	value).	Because	they	are	not	quantified,	no	arithmetic	operations	can	be	
applied to manipulate the values of e.	To	overcome	 this,	 let	 there	be	an	order-
preserving,	one-to-one	function	  mapping E onto the real line such that 
arithmetic operations may be performed on the values of x.	(The	fact	that	x can 
take	on	negative	numerical	values	is	of	no	consequence.)	The	function	g	is	taken	to	
be an ordinal scale or measure of effort that contains no more information than that 
present in the ordering on E,	and	x	represents	ordinally	measured	effort	“strengths.”	
Clearly	 	is	not	unique	and	any	strictly	increasing	transformation	 t of g such as 

,	where	the	derivative	  for all x,	is	another	ordinal	
scale	for	measuring	effort.	Both	  and  represent the same underlying 
ordering on E,	and	x and 	are	equally	legitimate	measures	that	can	be	used	to	
represent	the	various	strengths	of	different	kinds	of	effort.	From	a	logical	point	of	
view,	it	does	not	matter	which	representation	is	used	to	record	the	effort	ordering;	
the	choice	of	one	over	the	other	is	arbitrary.	Substitution	of	one	for	another	leaves	
the informational content of the ordering unchanged. 

It	is	not	necessary	to	repeat	the	details	of	requiring	effort	to	be	measured	on	
a	cardinal	or	 ratio	 scale.	Suffice	 it	 to	 say	 that	 the	choice	of	 the	particular	 scale	
employed	is	arbitrary,	although	the	permissible	strictly	increasing	transformations	of	
scale	are	limited	to	those	that	are,	respectively,	linear	or	dilations.	In	all	cases	the	
ordering	 and	 arithmetic-operation	 informational	 content	 of	 the	measured	 variable	
values	does	not	change	with	variations	in	the	admissible	scales.	It	follows	that,	in	
general,	 the	 analytical	 techniques	 employed	 to	manipulate	 the	numbers	 on	 these	
scales should give the same result regardless of the admissible scale on which 

6	 The	specification	of	non-denumerable	infinite	spaces	of	non-numerical	variable	values	is	not	considered	here.	
See	Katzner	[5,	Sect.	7.1].
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effort	is	measured.	This	is	true,	often	with	qualification	(as	described	in	terms	of	
modification of the function T	in	the	example	of	Section	I)	when	the	function	values	
of g are	cardinal	or	ratio	measured.	However,	with	respect	to	optimization	that	is	not	
always the case when those function values are only ordinally measured.

An example employing optimization in which substitution of ordinal scales 
without	any	qualification	at	 all	does	not	make	a	difference	occurs,	 as	previously	
suggested,	 in	 the	classical	 theory	of	consumer	demand.	 In	 that	case,	utility	may	
be	understood	as	an	ordinal	measure	of	the	“pleasure”	a	consumer	would	obtain	
from	the	various	baskets	containing	quantities	of	goods	(the	quantities	being	ratio	
measured)	he	or	she	might	purchase	or	demand,	and	is	expressed	as	a	function	of	
those	baskets.	To	determine	the	consumer’s	demand	for	baskets,	utility	is	maximized	
subject to the individual’s budget constraint. Applying any increasing transformation 
to the elements of the range of the ordinal utility function does not change the 
outcome	of	 the	maximization	 and	hence	 the	basket	 of	 goods	demanded.	 In	 this	
case,	ordinality	does	not	affect	the	outcome	of	the	maximization	because	it	arises	
with	respect	to	the	values	of	the	function	being	maximized.	But,	as	intimated	earlier,	
when the ordinality appears in terms of an argument of the function with respect 
to	which	 the	maximization	 is	 taken,	 the	choice	of	scale	does	make	an	 important	
difference.	In	particular,	the	structure	of	the	analysis	can	break	down	and	in	that	
case	the	questions	being	addressed	by	the	optimization	cannot	be	given	meaningful	
answers.

Although the following focuses on the problem of maximizing a function of a 
single	variable,	much	of	the	argument	is	easily	generalized.

Consider	the	above	context	in	which	effort	e is an ordinally measured variable 
and let  be chosen to represent the ordering on E. Let f  be a function defined on 
the range of  into the real line indicating the output y obtained from each effort e 
in E as represented by x.	Thus

on ( ).	 Suppose	 a	 goal	 of	 the	 analysis	 is	 to	 find	 the	 unique	
value of e	that	maximizes	output.	Suppose	also	that	that	value	is	to	be	found	by	
first	obtaining	the	unique	value	  that maximizes the output function f.	Then	  
is	 to	be	related	back	 to	e through  (recall that 	 is	1-1).	Thus,	with	enough	
differentiability it becomes sufficient to determine the  for which  
and .	The	 following	propositions	and	discussion	provide	 insight	 into	
this approach.

Proposition 1. Let D be a subset of the real line R. Let f  map D into R,	and	
t map D onto D.	Then	f  has a maximum at  in D if and only if the composite 
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function  has a maximum at some  in D.
Proof:	Substituting	t(x) for x in f  changes the values that f  assigns to each x 

in D.	But	it	does	not	change	the	collection	of	function	values	of		f.		The	application	
of t only rearranges the assignment of the function values of f  to the elements of its 
domain.	So	there	is	a	maximum	value	among	the	function	values	of	f  if and only 
if there is one among the function values of f*t. 

QED
For some functions f		and	transformations	t,	it	turns	out	that	 .	This	

would	be	the	case,	for	example,	if	

and  for any constant .7	For	then,	both	(2)	and	the	composite	
function  have maxima at  and .	But	
there are transformations such as

,	with	b	a	non-zero	constant,	where	this	relationship	does	not	
hold.	In	the	latter	case,	replacing	x by 	in	(2),	  which 
has a maximum at .	To	compare	 the	underlying	value	of	e from the 
maximization of  with that from the maximization of  when 
,	let	  be associated with  under  and  with  under  (remember that 
	and,	in	this	case	t,	are	1-1).	Since	  is transformed into  by t,	both	
 in D and  in the transformed space correspond to the same value  

But	  in D and in the transformed space .	Therefore	
.	Thus	the	outcome	of	the	maximization	of	  depends on the particular scale 
that is used. 

If,	 instead	of	representing	effort,	e	were	to	denote,	say,	hotness	or	 longness,	
and measured as x	by,	 respectively,	 (cardinally	measured)	 temperature	or	(ratio	
measured)	 length,	 and	 if	 output	 y and the function f  were replaced by an 
appropriate	 variable	 and	 function,	 then	 equation	 (1)	 can	be	 adjusted,	 as	 in	 the	
example	of	Section	I,	to	compensate	for	the	change	in	scale.	That	is,	changing	the	
measurement of a variable from Fahrenheit to centigrade or from feet to meters can 
be	accompanied	by	an	appropriate	adjustment	in	(1)	that	allows	for	retention	of	the	
same	relation	(albeit	expressed	in	different	units)	in	the	new	statement	
,	where	 t	 is	 the	 appropriate	 increasing	 transformation	 (linear	 or	 dilation)	 that	 is	
applied	to	make	the	switch.	Under	such	conditions,	the	same	outcome	  obtains 
with	either	scale.	But	if	effort	is	measured	only	ordinally,	and	if	there	is	no	generally	
accepted scale for measuring it and no generally acceptable form for f		in	(1),	then	

7 A generalization of which this this example is a special case appears in Proposition 3 below.
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there	is	no	way	to	identify	an	acceptable	concrete	structure	for	(1).	And,	since	the	
choices of ,	and	 t	are	all	arbitrary,	the	question	of	which	value	of	e maximizes 
output cannot be answered.

However,	even	if	there	were	a	generally	accepted	scale	for	e and form for f,		
as	long	as	e	is	only	ordinally	measured,	there	is	another	difficulty.	Return	to	the	
function	of	(2)	and	suppose	the	value	of	e	that	uniquely	maximizes	output	is	still	to	
be determined by finding the 	that	maximizes	(2).	Of	course,	in	this	case	
,	and	the	first-	and	second-order	derivatives,	  and  for 
all x.	As	before,	the	value	of	e associated with  is obtained from .

Now change the scale on which e is measured by replacing x	in	(2)	with	the	
transformation 

	 	 															 	 	 (3)
where . Here t is defined on the set of all real numbers R	but,	in	violation	

of	one	of	the	hypotheses	of	Proposition	1,	it	does	not	map	onto	R. Instead it maps 
R	into	the	set	of	all	negative	real	numbers.	The	transformation	in	(3)	is	allowable	
because e is only ordinally measured by x and all increasing transformations of scale 
are therefore admissible. And with 	 everywhere,	  is 
increasing.	Of	course,	t would not be admissible were e cardinally or ratio measured. 
Upon	substituting	(3)	into	(2),

	 	 	 	 	 (4)
From	(4)	it	follows	that	 ,	which	cannot	be	zero	for	

any	x.	Thus,	although	a	maximum	exists	at	 	in	(2),	it	disappears	when	the	
increasing	transformation	(3)	is	applied	to	x.	Here,	again,	is	a	situation	in	which	
the	question	of	which	value	of	e	maximizes	output	cannot	be	answered.	That	 is	
because,	depending	on	the	scale	employed,	the	maximizing	value	of	x may not even 
exist. And there is no way to determine objectively whether the function f		in	(1)	
is capable of maximization.

Returning	 to	 the	 context	 of	Proposition	 1,	 in	 the	 case	 of	 differentiability,	 a	
stronger result is obtained.

Proposition 2.	Under	 the	 hypotheses	 of	Proposition	 1,	 suppose	 that	D is 
an open set and that both f  and t are twice differentiable. Assume the derivative 

 on D.	Then	f  has a maximum at  with  in D if and 
only if the composite function  has a maximum at some  with 

 in D.
Proof:	 Suppose	 f  has a maximum at  in D and .	 Then	

according	 to	 Proposition	 1,	 the	 composite	 function	  has a 
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maximum	at,	 say,	 . It follows that  and  . It 
remains to show that . Now for any x,

and

At the maximum ,

Although the effect of applying the transformation t does not change the 
collection of function values of  f,	it	can,	as	has	been	seen,	change	the	maximizing	
value of x.	It	also	can	stretch	or	shrink	parts	of	the	domain	of	f	and	consequently	
alter	the	curvature	of	the	function’s	graph.	But	since	the	function	values	have	only	
been relocated over D	and	not	altered,	that	stretching	or	shrinking	cannot	change	
the	sign	of	the	second-order	derivative	at	the	maximizing	value	as		f  is transformed 
into .		Therefore	 	It	follows	from	(5)	that	 .

QED
How the curvature of the graph of  f  changes when t operates on x depends 

on the nature of t.	Consider	 (2)	once	again.	Letting	  for any b,	
then  and ,	 and	although,	as	has	been	
seen,	the	maximizing	value	changes	to	 ,	the	curvature	of	the	graph	remains	
unchanged. When  for ,	then	as	before	  and 
for	any	x,	the	second	order	derivative	 .	Thus,	with	no	change	
in	the	zero-maximizing	value,	the	curvature	becomes	greater	everywhere	if	  
and lesser everywhere if . 

Note that although the conclusion of Proposition 1 applies to the transformation 
 (because t	maps	the	real	line	onto	itself),	that	of	Proposition	2	does	

not since .	In	this	case,	the	maximum	of	  remains at the origin 
but  .

Another way of stating the conclusion of the second part of Proposition 2 is 
that,	even	if	  for some x in D,	the	strict	convexity	around	the	maximizing	
value  does not change around the new maximum at  upon application of the 
transformation of scale t.	But	it	is	possible	that	the	curvature	of	the	graph	of		f  can 
be altered in a region that does not contain the critical point from strictly concave 
to strictly convex by applying an appropriate t.	To	illustrate,	let

on	the	domain	of	all	 real	numbers.	Then	  and  f  has a 
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maximum at .	Moreover,	  for all x so that  f  is strictly 
concave throughout its domain. Now apply the transformation  by 
replacing x	in	(6)	by	 .	Then

and 

for all x.	The	maximum	of	  occurs at  which is different 
from .	But	for	any	x,	the	second-order	derivative		  
can	be	positive	or	negative.	In	particular,	 where 
,	 and	 where .	 Thus,	 upon	 application	 of	 t,	 the	
graph of  f  changes from strictly concave to strictly convex over the interval 

).	Note	that	  so that the maximizing 
value of 	 lies,	 as	 it	must,	 in	 the	 region	where	 the	graph	of	  is strictly 
concave.

There	is	also	a	special	case	in	which	the	  maximizing  f  does not change 
under	dilation	transformations	of	scale.	The	function	f  is homogeneous of degree 
k	when,	for	all	x in D,

for any .
Proposition 3.	Under	the	hypotheses	of	Proposition	2,	if	f	is	homogeneous	of	

any degree k and if  for any constant ,	Then	f  has a maximum at 
 with  in D if and only if the composite function  

has a maximum at  with  in D.
Proof:	 Suppose	 f  has a maximum at  in D and .	 Then	

.	 Since	 f  is homogeneous of degree k,	 by	Euler’s	Theorem	  is 
homogeneous of degree  and  is homogeneous of degree .	Then,	setting	

,	in	(7)	gives	   and   for any x. 
Therefore

and	from	(5),

implying that 	has	a	unique	maximum	at	 .

QED

Under	the	conditions	of	Proposition	3,	since	the	maximizing	value,	 ,	does	
not change under positive dilations  for ,	 the	value	of	  and 
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hence 	can	be	uniquely	determined.	That	 is,	 if	e is ratio measured and f  is 
homogeneous	of	any	degree,	then	admissible	changes	in	scale	do	not	change	the	
outcome	of	the	maximization	process.	As	previously	shown,	the	maximization	of	(2)	
with respect to x is an illustration.

The	following	results	may	be	drawn	from	this	discussion:
Conclusion A. If e	 is	 cardinally	 or	 ratio	measured,	 the	 application	 of	 any	

admissible	 (i.e.,	 linear	 or	 dilation)	 transformation	 of	 scale	 to	 e cannot alter the 
value of e that maximizes f		(assuming	it	exists)	as	long	as	f		is,	when	necessary,	
appropriately adjusted to account for the scale change.

Conclusion B. When e is only ordinally measured and hence all increasing 
transformations	of	scale	are	admissible,	the	actual	value	of	e that maximizes a generally 
accepted function f,	 even	 if	 that	value	exists	uniquely	across	 some	measurement	
scales with the appropriate adjustments in f,	 still	 cannot	 be	 determined	 as	 the	
definitive maximizer of  f.		That	is,	because	the	application	of	some	transformations	
of scale may result in an outcome for which a maximizing value of x	does	not	exist,	
and	because	no	scale	transformation	is	privileged	over	any	of	the	others,	it	is	not	
possible to assert that a maximizing value of e exists.

III
It should be pointed out that there are ways to circumvent the ordinality 

problem	addressed	in	Conclusion	B.	On	the	one	hand,	it	can	be	just	assumed	away	
by supposing that an acceptable f  has been sufficiently precisely specified and that 
the	changes	in	scale	that	cause	the	difficulty	have	been	ruled	out.	But	this	approach	
is	not	very	satisfying	because,	given	the	ordinality	of	x,	the	choice	of		f  and the 
limitations imposed on scale transformations are arbitrary. And that arbitrariness 
leads	to	questions	of	relevance	and	cogency	of	the	analysis.	On	the	other	hand,	
the ordinal measurement of e could be discarded and the structural content of the 
problem contained in f could be revised to accommodate e	 as	 an	 unquantified	
variable.	One	possibility	is	as	follows:

Let ρ	be	a	reflexive,	transitive,	and	total	relation	defined	on	E which is not 
necessarily	capable	of	ordinal	representation.	Consider	the	family	F of subsets  of 
E characterized by ,	for	all	  in E.	It	is	clear	that,	
since ρ	is	total,	F has the finite intersection property.8	Suppose	the	  are closed 
according a topology that has been specified on E,	and	that	E itself is compact. It 
follows that there exists an  that is contained in every 	(Kelley	[8,	p.	136]	and	
hence that  for all e in E.	In	the	latter	sense,	 	is	“maximal”	with	respect	
to ρ.	Thus	a	relation	can	be	maximized	with	respect	to	an	ordinal	variable	without	

8 F has the finite intersection property when the intersection of every finite subfamily of F is nonempty.
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relying on its ordinality in any way.
In	the	next	section	an	example	is	presented	from	the	Economics	literature	in	

which a function is maximized with respect to a variable which might be rejected as 
cardinally	or	ratio	measured.	Given	that	rejection,	the	most	that	can	be	hoped	for	
is ordinal measurement.

IV
The	main	purpose	of	 economic	 analysis	 is	 taken	here	 to	be	 the	 explanation	

of	 observable	 economic	phenomena.	Explanatory	models	of	 observable	 economic	
behavior	typically	set	up	a	framework	within	which	decisions	are	taken	that	propel	
economic	behavior.	Assumptions	are	then	imposed	that	drive	the	action	of	making	
the	decision,	 thereby	explaining	 the	behavior.	An	example	will	be	given	here	 in	
which	optimization	is	the	decision-making	force	that	generates	behavior.	In	this	case,	
the cogency and viability of the explanation depends on whether certain variables in 
the models can be measured at least on a cardinal scale.

Consider	the	attempt	by	Becker	and	Lewis	[1]	to	explain	an	observed	interaction	
between	 the	number	 of	 children	 a	 family	has	 and	 the	quality	 of	 those	 children.	
Becker	and	Lewis	begin	with	a	family’s	ordinal	utility	function

defined on { where n	is	the	number	of	children,	
q	is	their	measured	quality	(assumed	to	be	identical	across	all	children),	and	z is 
the	number	of	units	of	consumption	commodities	(appropriately	condensed	into	one)	
consumed.	This	function	represents	the	family’s	ordered	preferences	among	vectors	

.	Since	children	of	any	quality	and	consumption	are	costly,	the	family	is	
constrained by its income I:

where  and 	are	parameters	representing,	respectively,	the	price	
per unit of nq	(which	may	be	thought	of	as	“total”	child	quality)	and	the	price	per	
unit of z.	The	family	choice	of	  is thought to be determined by maximizing 
u	subject	to	the	constraint	(8).	Assuming	that	unique	global	maxima	exist	for	all	

 and  and that u	has	sufficient	differentiability	properties,	the	method	
of	Lagrange	multipliers	is	used	to	locate	each	maximum.	The	Lagrangean	expression	
is 

where λ is the appropriate multiplier. Differentiating L with respect to the three 
variables,	setting	those	derivatives	equal	to	zero,	and	denoting	the	partial	derivatives	
of u	by	subscripts,
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and

These	three	equations	together	with	(8)	determine	values	for	n,	q,	and	z given 
 and .
Becker	 and	 Lewis	 employ	 shadow	 prices	 of	 n,	 q and z in much of their 

discussion	about	the	interaction	between	the	determined	values	of	child	quantity	n 
and	measured	child	quality	q.	But	it	 is	not	necessary	to	examine	their	argument	
further.	The	point	of	interest	here	is	the	calibration	of	child	quality.	How	is	that	to	
be	measured	–	as	a	child’s	intelligence	indicated	by	a	performance	on	an	IQ	test,	
or	as	money	spent	on	his/her	education,	or	something	else?	According	to	Gould	
[3,	Ch.	 5],	 IQ	 	 tests	 do	 not	 actually	measure	 intelligence.9 And the spending 
of money on education does not necessarily result in an educated person. More 
generally,	these	latter	measures,	although	ratio	in	nature,	do	not	seem	to	include	
enough	characteristics	of	what	might	be	referred	to	as	child	quality.	Many	elements	
such	as	health,	energy,	emotional	stability,	ability	to	interact	with	others,	motivation	
to	succeed,	etc.	are	left	out.	However,	it	may	still	be	possible	to	describe	in	words	
various	manifestations	of	child	quality	in	terms	of	these	characteristics,	and	order	
those	manifestations	according	to	perceived	child	quality.	In	this	way,	an	ordinal	
measure	of	child	quality	might	be	obtained.	But,	given	the	descriptions	of	cardinal	
and	ration	measures	detailed	at	the	outset,	it	is	hard	to	see	how	either	could	be	
procured	as	a	measure	of	child	quality.	And	if	cardinal	and	ratio	scales	are	ruled	out	
and	ordinality	is	all	that	is	attainable,	then,	as	described	above,	the	maximization	
of u	subject	to	constraint	is	unable	to	determine	a	unique	child	quality,	and	the	
Becker-Lewis	argument	breaks	down.

Conclusion.
This	paper	deals	with	the	permissible	transformations	of	the	scale	of	measurement	

applied	 to	 the	 variables	 with	 respect	 to	 which	 that	 function	 is	 optimized.	 The	
collection of permissible transformations depends on whether the variable is measured 
on	a	ratio,	cardinal	(interval),	or	ordinal	scale.	

9	 Apparently,	the	inventor	of	the	IQ	test,	Alfred	Binet,	developed	the	test	for	different	purposes	and	did	not	
believe	it	measured	intelligence,	(Gould	[3,	p.	151]).	“If	Binet’s	principles	had	been	followed,	and	his	tests	
consistently	used	as	he	intended,	we	would	have	been	spared	a	major	misuse	of	science	in	our	century.”	Gould	
[3,	p.	155].
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