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Abstract: This paper explores the impact on the outcome of optimizing a 
function when permissible transformations of the scale of measurement are 
applied to the variable with respect to which that function is optimized. 
The collection of permissible transformations vary depending on whether the 
variable is measured on a ratio, cardinal (interval), or ordinal scale. Certain 
problems arise when the variable in question is measured only on an ordinal 
scale.
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Analysis often requires the use of numbers that may be understood as being 
drawn from a measurement scale. This is true, for example, with the statement 
that distance equals velocity times time. In that equation, distance is measured by 
length taken from a scale such as miles; velocity from a scale defined by, say, miles 
per hour; and time from a scale that counts instants or periods. Those three scales 
are generally characterized as ratio scales. In Economics, ratio scales along with 
two other kinds of scales, ordinal and cardinal (or interval) scales, have become 
important. These scales may be characterized as follows:

The current mathematical notion of ordinality dates to the 1950s (Narens.L., 
1985). It is based on the idea that ordinal numbers emerge as values that are are 
located in the image of some order-preserving function (ordinal scale). That function 
is defined on an abstract space, call it D, on which a reflexive, transitive, and total 
(complete) relation ordering its elements according to a specific property is imposed, 
and whose property-ordering is preserved in the function’s values. Were D with 
such an ordering to be specified independently, it can be shown that such an order-
preserving function exists if and only if the interval topology for the equivalence 
classes under the ordering has a countable base (Pfanzagl.J., 1971). The order-
preserving function may be said to be a representation of the underlying ordering. 
And any increasing transformation of the numbers in the range of the function also 
represents that ordering or, in other words, is a different ordinal scale that preserves 
the original ordering in the transformed function values. Without additions to this 
framework, it is not legitimate to perform arithmetic operations with ordinal numbers 
because there is no underlying basis for doing so. Thus the derivatives of a function 
whose range consists of ordinal numbers cannot be calculated since their derivations 
require the use of subtraction and division.

The only way to introduce the possibility of arithmetic manipulation of ordinal 
numbers is to add to the ordering structure built on the underlying space. This may 
be accomplished by introducing an additive composition operation1 on the latter 
along with the requirements that D is connected and contains at least two elements. 
The added structure turns the ordinal scale into a cardinal scale (Pfanzagl.J., 1971). 
The only increasing transformations of scale that can be applied while maintaining 
on D both the ordering and compositional constructions in a cardinal representation 
are linear. Ratio scales are cardinal scales having the further feature that the position 
of the zero does not change under all admissible transformations of scale.2 In the 

1	 A composition operations is additive if it is associative, commutative, cancellable, and continuous in each 
variable separately.

2	 For example, temperature is a measured on a cardinal, but not ratio scale because the zero changes in moving 
from, say, Fahrenheit to centigrade. Weight is measured on a ratio scale since the zero is the same regardless 
of whether measurement is in terms of pounds or kilograms.
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case of ratio scales, only dilation transformations of scale are admissible.3 
These concepts may be illustrated in terms of pieces of chalk. One of the 

properties of chalk is that each piece has “longness” associated with it. That 
longness orders the pieces of chalk in a reflexive, transitive and total way and is 
measured by the order-preserving function length in, say, inches.  The length scale 
is ordinal since a piece of chalk with more longness has greater length associated 
with it. Also associated with longness is an additive composition operation identified 
on D as the placing of individual pieces end to end. Thus the longness of the 
combination of any two pieces of chalk is measured as the sum of the lengths of the 
individual pieces in it. That is, the length scale is cardinal. It is also a ratio scale 
since transforming the scale into, say, centimeters leaves the position of the zero 
unchanged. Such are the basic ideas characterizing the current mathematical notions 
of ordinal, cardinal, and ratio scales.

However, there is an older concept of ordinality that is defined similarly to that 
described above except that it permits arithmetic operations with ordinal numbers 
while ignoring the underlying compositional requirements necessary, in the 1950s 
approach, to perform them. From this alternative perspective ordinal numbers are 
also seen as located in the range of an order-preserving function and may be added, 
subtracted, multiplied, and divided irrespective of any composition operation that 
might be defined to justify those manipulations. All increasing transformation of 
scale (not only the linear ones) can be applied to ordinal numbers without disrupting 
the underlying ordering on D and without losing the ability to perform arithmetic 
operations on the transformed numbers. In this context, any function whose values 
are ordinal can be differentiated provided it has the right smoothness properties. 
Such an ‘old fashion’ notion of ordinality persisted before it was replaced by the 
more modern approach of the 1950s (Stevens.S.S, Friday, June 7, 1946).

Now, explicitly or implicitly, old fashion ordinality entered the economics 
theoretical literature long before the 1950s. As far back as 1892, Fisher [2, pp. 
31-33] realized that applying increasing transformations to the ordinal values of 
a function with a maximum value does not change the element in the domain 
over which the maximum occurs. Both Hicks [4, pp. 306-307] and Samuelson 
[11, p. 94] base their respective 1939 and 1958 discussions of the theory of 
consumer demand on twice, continuously differentiable, (old fashion) ordinal utility 
functions (i.e., functions with old fashion ordinal function values and domains 
consisting of vectors of ratio measured quantities of commodities) and the method 
of Lagrange multipliers. And this old fashion approach to ordinality survives in the 
Economics literature to this day (Donald W. Katzner, May 2014). The more 
3	 The linear function  where a and b are constant is called a dilation when 
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modern approach of the 1950s does not seem to have caught on in any general way 
among economists. In the remainder of this paper, “ordinal scale” will refer to the 
old fashion economist notion while “cardinal” and “ration scales” will denote the 
mathematical conceptualizations as described above.

In many analyses, the choice of which scales to use (i.e., whether to employ, 
say, inches or centimeters to measure length) is arbitrary. And in most of these the 
selections made do not matter. This is certainly true of the ordinal utility functions 
appearing in the theory of consumer demand mentioned above. But, as will be seen, 
the lack of consequences does not hold up everywhere. In particular, the choice 
of measurement scales does make an important difference when a function whose 
argument can be measured only on an ordinal scale is optimized. It should be noted 
that while the term ‘optimization’ covers both maximization and minimization with 
and without constraints, the following focuses only on unconstrained versions of one 
or the other as indicated by the context of the issue under discussion.

To see what is involved, it is necessary to consider in detail how changes in 
scale affect the outcome of the optimization process. This is the subject matter of 
the next two sections. Section I provides a concrete example of how changes in 
scale of a ratio measured variable with respect to which a function is minimized 
affects the result of the minimization. In this illustration, the scale change requires 
a corresponding adjustment of the function to be minimized in order to obtain a 
consistent outcome. Section II considers the problem more generally. It is here that 
the difficulty with respect to ordinality is discussed. Although most of that discussion 
is stated in terms of ordinal scales, much of it also applies when cardinal or ratio 
scales are in use as long as the restrictions on the nature of admissible scale changes 
(linear in the case of cardinal scales and dilations for ratio scales) are respected. 
Section III considers two ways around the ordinality problem raised in Section II. 
And Section IV provides an example in economics in which, if a variable with 
respect to which a function is to be maximized is taken to be ordinal (and a case 
can be made for that ordinality), then the analysis based on that maximization runs 
into difficulty.

I
Suppose 4 there are two ways to ride a bicycle between points A and D. One 

way is to follow a straight road from A to point B, and then a perpendicular straight 
road to D (see Figure 1). The alternative is to cut across a field from A and pursue 
a straight line to a point C on the road between B and D, and then continue on 
the latter road to D. The distance between A and B is 8 miles, and that between 
B and D is 16 miles. Assume the cyclist’s average speed on roads is 10 miles per 
4	 This example is based on A. Svirin [13, Example 18].
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hour, while that across the field is only 6 miles per hour. Suppose the cyclist wants 
to choose C, which can be located anywhere between B and D, to minimize the 
riding time between A and B.

In this example, longness is measured by distance in miles. With  
representing the distance between B and C, the distance between A and C, 
obtained from the Pythagorean Theorem is . Using the formula time 
equals distance divided by velocity, the time required to bicycle form A to B is the 
sum of the times needed from A to C and C to D:

Differentiating with respect to x,

and equating that derivative to zero gives the time-minimizing distance5 from B 
to C as  The minimum time is  Denote the underlying longness 
between B to C which is measured as 6 miles by . 

Now let the scale on which longness is measured be changed by dilation from 
miles to half-miles. Then x denotes the distance between B and C in modified 
units (half-miles), the distance between A and B becomes 16, that between B and 
D expands to 32, and that between A and C is written as . The time 
function becomes

and upon setting the derivative to zero,  the minimum time remains 
unchanged at  Represent the underlying longness between B and 
C in the context of the scale change by . Since the transformed value of  
originally measured as  under the scale change to half-mile units is , 
it is clear that . Thus the change in scale does not alter the outcome of the 
minimization problem. This happens because changing the scale on which longness 
is measured is accompanied by corresponding modifications in the parameters of 
T that adjust that function to express the relation that T represents with respect 
to the new measure. Obviously, T has to be characterized in sufficiently specific 
form to be able to make the necessary adjustment. But if longness were measured 
only on an ordinal scale and if T were not defined with enough precision, such 
modification might not be possible, and it then would not necessarily follow that 
5	 It is easily verified that the second-order derivative  for all .
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. And even if T were specified in sufficient detail, it is still possible, as will 
be seen subsequently, that applying certain transformations of scale, a value of x 
that minimizes T would not exist and  could not then be determined. The matter 
will be taken up in the next section in the context of maximization.

II
To be concrete, let e be the variable “effort” ranging over some non-denumerably 

infinite space E which contains distinct non-numerical, written paragraphs describing 
the various forms of “effort” that might arise in a particular study.6 The question of 
which scale (ordinal, cardinal, or ratio) is appropriate to use in measuring effort is 
not considered here. The consequences of using one over the other will be discussed 
in due course. Let there be a reflexive, transitive, and total ordering relation defined 
on E according to the “strength of effort” thought to arise in each description 
(variable value). Because they are not quantified, no arithmetic operations can be 
applied to manipulate the values of e. To overcome this, let there be an order-
preserving, one-to-one function  mapping E onto the real line such that 
arithmetic operations may be performed on the values of x. (The fact that x can 
take on negative numerical values is of no consequence.) The function g is taken to 
be an ordinal scale or measure of effort that contains no more information than that 
present in the ordering on E, and x represents ordinally measured effort “strengths.” 
Clearly  is not unique and any strictly increasing transformation t of g such as 

, where the derivative  for all x, is another ordinal 
scale for measuring effort. Both  and  represent the same underlying 
ordering on E, and x and  are equally legitimate measures that can be used to 
represent the various strengths of different kinds of effort. From a logical point of 
view, it does not matter which representation is used to record the effort ordering; 
the choice of one over the other is arbitrary. Substitution of one for another leaves 
the informational content of the ordering unchanged. 

It is not necessary to repeat the details of requiring effort to be measured on 
a cardinal or ratio scale. Suffice it to say that the choice of the particular scale 
employed is arbitrary, although the permissible strictly increasing transformations of 
scale are limited to those that are, respectively, linear or dilations. In all cases the 
ordering and arithmetic-operation informational content of the measured variable 
values does not change with variations in the admissible scales. It follows that, in 
general, the analytical techniques employed to manipulate the numbers on these 
scales should give the same result regardless of the admissible scale on which 

6	 The specification of non-denumerable infinite spaces of non-numerical variable values is not considered here. 
See Katzner [5, Sect. 7.1].
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effort is measured. This is true, often with qualification (as described in terms of 
modification of the function T in the example of Section I) when the function values 
of g are cardinal or ratio measured. However, with respect to optimization that is not 
always the case when those function values are only ordinally measured.

An example employing optimization in which substitution of ordinal scales 
without any qualification at all does not make a difference occurs, as previously 
suggested, in the classical theory of consumer demand. In that case, utility may 
be understood as an ordinal measure of the “pleasure” a consumer would obtain 
from the various baskets containing quantities of goods (the quantities being ratio 
measured) he or she might purchase or demand, and is expressed as a function of 
those baskets. To determine the consumer’s demand for baskets, utility is maximized 
subject to the individual’s budget constraint. Applying any increasing transformation 
to the elements of the range of the ordinal utility function does not change the 
outcome of the maximization and hence the basket of goods demanded. In this 
case, ordinality does not affect the outcome of the maximization because it arises 
with respect to the values of the function being maximized. But, as intimated earlier, 
when the ordinality appears in terms of an argument of the function with respect 
to which the maximization is taken, the choice of scale does make an important 
difference. In particular, the structure of the analysis can break down and in that 
case the questions being addressed by the optimization cannot be given meaningful 
answers.

Although the following focuses on the problem of maximizing a function of a 
single variable, much of the argument is easily generalized.

Consider the above context in which effort e is an ordinally measured variable 
and let  be chosen to represent the ordering on E. Let f  be a function defined on 
the range of  into the real line indicating the output y obtained from each effort e 
in E as represented by x. Thus

on ( ). Suppose a goal of the analysis is to find the unique 
value of e that maximizes output. Suppose also that that value is to be found by 
first obtaining the unique value  that maximizes the output function f. Then  
is to be related back to e through  (recall that  is 1-1). Thus, with enough 
differentiability it becomes sufficient to determine the  for which  
and . The following propositions and discussion provide insight into 
this approach.

Proposition 1. Let D be a subset of the real line R. Let f  map D into R, and 
t map D onto D. Then f  has a maximum at  in D if and only if the composite 
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function  has a maximum at some  in D.
Proof: Substituting t(x) for x in f  changes the values that f  assigns to each x 

in D. But it does not change the collection of function values of  f.  The application 
of t only rearranges the assignment of the function values of f  to the elements of its 
domain. So there is a maximum value among the function values of f  if and only 
if there is one among the function values of f*t. 

QED
For some functions f  and transformations t, it turns out that . This 

would be the case, for example, if 

and  for any constant .7 For then, both (2) and the composite 
function  have maxima at  and . But 
there are transformations such as

, with b a non-zero constant, where this relationship does not 
hold. In the latter case, replacing x by  in (2),  which 
has a maximum at . To compare the underlying value of e from the 
maximization of  with that from the maximization of  when 
, let  be associated with  under  and  with  under  (remember that 
 and, in this case t, are 1-1). Since  is transformed into  by t, both 
 in D and  in the transformed space correspond to the same value  

But  in D and in the transformed space . Therefore 
. Thus the outcome of the maximization of  depends on the particular scale 
that is used. 

If, instead of representing effort, e were to denote, say, hotness or longness, 
and measured as x by, respectively, (cardinally measured) temperature or (ratio 
measured) length, and if output y and the function f  were replaced by an 
appropriate variable and function, then equation (1) can be adjusted, as in the 
example of Section I, to compensate for the change in scale. That is, changing the 
measurement of a variable from Fahrenheit to centigrade or from feet to meters can 
be accompanied by an appropriate adjustment in (1) that allows for retention of the 
same relation (albeit expressed in different units) in the new statement 
, where t is the appropriate increasing transformation (linear or dilation) that is 
applied to make the switch. Under such conditions, the same outcome  obtains 
with either scale. But if effort is measured only ordinally, and if there is no generally 
accepted scale for measuring it and no generally acceptable form for f  in (1), then 

7	 A generalization of which this this example is a special case appears in Proposition 3 below.
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there is no way to identify an acceptable concrete structure for (1). And, since the 
choices of , and t are all arbitrary, the question of which value of e maximizes 
output cannot be answered.

However, even if there were a generally accepted scale for e and form for f,  
as long as e is only ordinally measured, there is another difficulty. Return to the 
function of (2) and suppose the value of e that uniquely maximizes output is still to 
be determined by finding the  that maximizes (2). Of course, in this case 
, and the first- and second-order derivatives,  and  for 
all x. As before, the value of e associated with  is obtained from .

Now change the scale on which e is measured by replacing x in (2) with the 
transformation 

	 	               	 	 	 (3)
where . Here t is defined on the set of all real numbers R but, in violation 

of one of the hypotheses of Proposition 1, it does not map onto R. Instead it maps 
R into the set of all negative real numbers. The transformation in (3) is allowable 
because e is only ordinally measured by x and all increasing transformations of scale 
are therefore admissible. And with  everywhere,  is 
increasing. Of course, t would not be admissible were e cardinally or ratio measured. 
Upon substituting (3) into (2),

	 	 	 	 	 (4)
From (4) it follows that , which cannot be zero for 

any x. Thus, although a maximum exists at  in (2), it disappears when the 
increasing transformation (3) is applied to x. Here, again, is a situation in which 
the question of which value of e maximizes output cannot be answered. That is 
because, depending on the scale employed, the maximizing value of x may not even 
exist. And there is no way to determine objectively whether the function f  in (1) 
is capable of maximization.

Returning to the context of Proposition 1, in the case of differentiability, a 
stronger result is obtained.

Proposition 2. Under the hypotheses of Proposition 1, suppose that D is 
an open set and that both f  and t are twice differentiable. Assume the derivative 

 on D. Then f  has a maximum at  with  in D if and 
only if the composite function  has a maximum at some  with 

 in D.
Proof: Suppose f  has a maximum at  in D and . Then 

according to Proposition 1, the composite function  has a 
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maximum at, say, . It follows that  and  . It 
remains to show that . Now for any x,

and

At the maximum ,

Although the effect of applying the transformation t does not change the 
collection of function values of  f, it can, as has been seen, change the maximizing 
value of x. It also can stretch or shrink parts of the domain of f and consequently 
alter the curvature of the function’s graph. But since the function values have only 
been relocated over D and not altered, that stretching or shrinking cannot change 
the sign of the second-order derivative at the maximizing value as  f  is transformed 
into .  Therefore  It follows from (5) that .

QED
How the curvature of the graph of  f  changes when t operates on x depends 

on the nature of t. Consider (2) once again. Letting  for any b, 
then  and , and although, as has been 
seen, the maximizing value changes to , the curvature of the graph remains 
unchanged. When  for , then as before  and 
for any x, the second order derivative . Thus, with no change 
in the zero-maximizing value, the curvature becomes greater everywhere if  
and lesser everywhere if . 

Note that although the conclusion of Proposition 1 applies to the transformation 
 (because t maps the real line onto itself), that of Proposition 2 does 

not since . In this case, the maximum of  remains at the origin 
but  .

Another way of stating the conclusion of the second part of Proposition 2 is 
that, even if  for some x in D, the strict convexity around the maximizing 
value  does not change around the new maximum at  upon application of the 
transformation of scale t. But it is possible that the curvature of the graph of  f  can 
be altered in a region that does not contain the critical point from strictly concave 
to strictly convex by applying an appropriate t. To illustrate, let

on the domain of all real numbers. Then  and  f  has a 
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maximum at . Moreover,  for all x so that  f  is strictly 
concave throughout its domain. Now apply the transformation  by 
replacing x in (6) by . Then

and 

for all x. The maximum of  occurs at  which is different 
from . But for any x, the second-order derivative    
can be positive or negative. In particular, where 
, and where . Thus, upon application of t, the 
graph of  f  changes from strictly concave to strictly convex over the interval 

). Note that  so that the maximizing 
value of  lies, as it must, in the region where the graph of  is strictly 
concave.

There is also a special case in which the  maximizing  f  does not change 
under dilation transformations of scale. The function f  is homogeneous of degree 
k when, for all x in D,

for any .
Proposition 3. Under the hypotheses of Proposition 2, if f is homogeneous of 

any degree k and if  for any constant , Then f  has a maximum at 
 with  in D if and only if the composite function  

has a maximum at  with  in D.
Proof: Suppose f  has a maximum at  in D and . Then 

. Since f  is homogeneous of degree k, by Euler’s Theorem  is 
homogeneous of degree  and  is homogeneous of degree . Then, setting 

, in (7) gives   and   for any x. 
Therefore

and from (5),

implying that  has a unique maximum at .

QED

Under the conditions of Proposition 3, since the maximizing value, , does 
not change under positive dilations  for , the value of  and 
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hence  can be uniquely determined. That is, if e is ratio measured and f  is 
homogeneous of any degree, then admissible changes in scale do not change the 
outcome of the maximization process. As previously shown, the maximization of (2) 
with respect to x is an illustration.

The following results may be drawn from this discussion:
Conclusion A. If e is cardinally or ratio measured, the application of any 

admissible (i.e., linear or dilation) transformation of scale to e cannot alter the 
value of e that maximizes f  (assuming it exists) as long as f  is, when necessary, 
appropriately adjusted to account for the scale change.

Conclusion B. When e is only ordinally measured and hence all increasing 
transformations of scale are admissible, the actual value of e that maximizes a generally 
accepted function f, even if that value exists uniquely across some measurement 
scales with the appropriate adjustments in f, still cannot be determined as the 
definitive maximizer of  f.  That is, because the application of some transformations 
of scale may result in an outcome for which a maximizing value of x does not exist, 
and because no scale transformation is privileged over any of the others, it is not 
possible to assert that a maximizing value of e exists.

III
It should be pointed out that there are ways to circumvent the ordinality 

problem addressed in Conclusion B. On the one hand, it can be just assumed away 
by supposing that an acceptable f  has been sufficiently precisely specified and that 
the changes in scale that cause the difficulty have been ruled out. But this approach 
is not very satisfying because, given the ordinality of x, the choice of  f  and the 
limitations imposed on scale transformations are arbitrary. And that arbitrariness 
leads to questions of relevance and cogency of the analysis. On the other hand, 
the ordinal measurement of e could be discarded and the structural content of the 
problem contained in f could be revised to accommodate e as an unquantified 
variable. One possibility is as follows:

Let ρ be a reflexive, transitive, and total relation defined on E which is not 
necessarily capable of ordinal representation. Consider the family F of subsets  of 
E characterized by , for all  in E. It is clear that, 
since ρ is total, F has the finite intersection property.8 Suppose the  are closed 
according a topology that has been specified on E, and that E itself is compact. It 
follows that there exists an  that is contained in every  (Kelley [8, p. 136] and 
hence that  for all e in E. In the latter sense,  is “maximal” with respect 
to ρ. Thus a relation can be maximized with respect to an ordinal variable without 

8	 F has the finite intersection property when the intersection of every finite subfamily of F is nonempty.
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relying on its ordinality in any way.
In the next section an example is presented from the Economics literature in 

which a function is maximized with respect to a variable which might be rejected as 
cardinally or ratio measured. Given that rejection, the most that can be hoped for 
is ordinal measurement.

IV
The main purpose of economic analysis is taken here to be the explanation 

of observable economic phenomena. Explanatory models of observable economic 
behavior typically set up a framework within which decisions are taken that propel 
economic behavior. Assumptions are then imposed that drive the action of making 
the decision, thereby explaining the behavior. An example will be given here in 
which optimization is the decision-making force that generates behavior. In this case, 
the cogency and viability of the explanation depends on whether certain variables in 
the models can be measured at least on a cardinal scale.

Consider the attempt by Becker and Lewis [1] to explain an observed interaction 
between the number of children a family has and the quality of those children. 
Becker and Lewis begin with a family’s ordinal utility function

defined on { where n is the number of children, 
q is their measured quality (assumed to be identical across all children), and z is 
the number of units of consumption commodities (appropriately condensed into one) 
consumed. This function represents the family’s ordered preferences among vectors 

. Since children of any quality and consumption are costly, the family is 
constrained by its income I:

where  and  are parameters representing, respectively, the price 
per unit of nq (which may be thought of as “total” child quality) and the price per 
unit of z. The family choice of  is thought to be determined by maximizing 
u subject to the constraint (8). Assuming that unique global maxima exist for all 

 and  and that u has sufficient differentiability properties, the method 
of Lagrange multipliers is used to locate each maximum. The Lagrangean expression 
is 

where λ is the appropriate multiplier. Differentiating L with respect to the three 
variables, setting those derivatives equal to zero, and denoting the partial derivatives 
of u by subscripts,
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and

These three equations together with (8) determine values for n, q, and z given 
 and .
Becker and Lewis employ shadow prices of n, q and z in much of their 

discussion about the interaction between the determined values of child quantity n 
and measured child quality q. But it is not necessary to examine their argument 
further. The point of interest here is the calibration of child quality. How is that to 
be measured – as a child’s intelligence indicated by a performance on an IQ test, 
or as money spent on his/her education, or something else? According to Gould 
[3, Ch. 5], IQ   tests do not actually measure intelligence.9 And the spending 
of money on education does not necessarily result in an educated person. More 
generally, these latter measures, although ratio in nature, do not seem to include 
enough characteristics of what might be referred to as child quality. Many elements 
such as health, energy, emotional stability, ability to interact with others, motivation 
to succeed, etc. are left out. However, it may still be possible to describe in words 
various manifestations of child quality in terms of these characteristics, and order 
those manifestations according to perceived child quality. In this way, an ordinal 
measure of child quality might be obtained. But, given the descriptions of cardinal 
and ration measures detailed at the outset, it is hard to see how either could be 
procured as a measure of child quality. And if cardinal and ratio scales are ruled out 
and ordinality is all that is attainable, then, as described above, the maximization 
of u subject to constraint is unable to determine a unique child quality, and the 
Becker-Lewis argument breaks down.

Conclusion.
This paper deals with the permissible transformations of the scale of measurement 

applied to the variables with respect to which that function is optimized. The 
collection of permissible transformations depends on whether the variable is measured 
on a ratio, cardinal (interval), or ordinal scale. 

9	 Apparently, the inventor of the IQ test, Alfred Binet, developed the test for different purposes and did not 
believe it measured intelligence, (Gould [3, p. 151]). “If Binet’s principles had been followed, and his tests 
consistently used as he intended, we would have been spared a major misuse of science in our century.” Gould 
[3, p. 155].
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