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A NEW PARADIGM OF BIG DATA-BASED RISK ASSESSMENT:
EVIDENCE FROM A METAL MINING COMPANY

Sodnomdavaa Tsolmon!, Lkhagvadorj Gunjargal"

Abstract: In recent years, mining companies have been increasingly exposed to a
wide range of environmental, social, economic, and technological risks, which have
adversely affected operational sustainability. Conventional risk assessment approaches
have limited capacity to incorporate real-time data and to adapt to dynamic operating
conditions. In contrast, artificial intelligence and machine learning methods offer new
opportunities to address these shortcomings. This study applies GRU, BiLSTM,
XGBoost, and Random Forest models to three primary data sources: a copper price
series covering 1960 to 2024, more than 700,000 hours of industrial process data, and
over 188,000 recorded occupational accident cases. Overall, the findings demonstrate
that Al and ML-based approaches can transform mining risk management from a

reactive framework into a proactive, real-time, and data-driven integrated system.
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UX OreraeA]l CYYPUACAH 3IPCAIAMUH YHIAIIIHUM
HIMHY TMAPAAUIM: METAAA OABOPAOX YYA YYPXAHH
KOMITAHHUHH HHULID3H J39P

Xypaanryii: CyyAulH KHAYYZ24 YYA yypXaHH carbGapblH KOMIAHHyZ Hb Gairaib
OpPYHH, HUATDM, 3JUHH 3aCar, TEXHOAOTH 33P3T OAOH TOPAHHH 3PCAINL 6pTe:x Gadraa
Hb YVHA a:KHAAAraaHbl TOTTBOPTOH 6GailZlarz; copreep HeAeeAx 6aiHa. Y AaM2KAAAT
SPCADAMHH YHIATI9HHH apradynaryyZ OGOZHT LATHHH OrerAeA alllurAaX, JAUHAMHK
HOXIIOA/ /IaCaH 30XMLOX YazBap CyA Gaiizar 60A XMHAMDA OIOYH yXaaH GOAOH MAIlMH
CYPraATbIH apra Hb DAT33PMAT JaBaH TyyAax MIHHD GOAOMKHET H32K OailHa. DHIXYY
cynarraanz 1960-2024 oubr 3scuitn yus, 700,000 rapyii warmitn yiAaspuiin
npouecch M3a33A3A, 188,000 rapyit ocabin ererzeas Tyaryypran GRU, BiLSTM,
XGBoost, Random Forest 3apar sarsapyyapir ammraas. Cyzairaanbr ayrHaATasp
Al/ML aprauraryys Hb yyA yypxaiiH 3pCAIAMEH YAMPAAATHII YPbAYHAAH COPIUHAAIX,
real-time, ereraeAs cyypuAcaH HHTEerpalldHACaH TYBIIHHZ XOT:KYYA3X 6GOAOMKTOMT
XapyyAaraa.
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1. Introduction

The mining sector, focused on metal extraction, plays a critical role in global economic
growth, digital transformation, and the supply of raw materials essential for clean energy
technologies (World Bank, 2020; IEA, 2021). In particular, metals such as copper,
nickel, cobalt, and lithium have become core inputs for renewable energy systems, electric
vehicles, battery technologies, and innovative infrastructure, leading to a rapid expansion in
extraction activities in response to rising global demand. At the same time, mining
operations have become increasingly intertwined with complex, multidimensional, and
interdependent risk structures, which now constitute a key factor influencing corporate

sustainability, profitability, and social acceptance (OECD, 2021).

In recent years, the mining industry has faced a growing set of emerging risks in addition
to traditional environmental and economic challenges. Climate change-related risks,
including extreme heat, prolonged droughts, and tailings dam failures, have increasingly
resulted in production disruptions and operational instability (Sartor & Bataille, 2019).
Social risks have also intensified, as rising community opposition and public resistance
have led to the suspension or cancellation of mining projects in several regions (Kemp et
al., 2011). Furthermore, cybersecurity risks have escalated alongside the adoption of
automation and intelligent systems, exposing mining operations to data breaches, system
failures, and operational shutdowns (EY, 2023). These evolving risk dynamics extend
beyond the scope of conventional expert-based assessment frameworks and call for more
dynamic, data-driven methodologies that capture systemic interdependencies and real-time

changes in operating conditions.

Traditional approaches to mining risk assessment include Failure Modes and Effects
Analysis (FMEA), probability impact matrices, expert judgment, and SWOT or
PESTLE analyses. These techniques are typically characterized by linear and static
perspectives and rely heavily on subjective expert evaluations (Tah & Carr, 2001; Pons
& Bikfalvi, 2020). As a result, they are often unable to capture risks arising from
multiple interacting factors fully, and their capacity to reflect real-world dynamics remains

limited.

To overcome these limitations, data-driven modern methodologies, particularly those based
on machine learning (ML) and artificial intelligence (Al), have gained substantial
momentum in mining risk assessment over the past decade (Bhuiyan et al., 2021). These

models are distinguished by their ability to extract latent patterns from large-scale datasets,
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represent complex multivariate relationships, and generate predictive insights. For example,
Random Forest algorithms have been used to identify key drivers of economic risk; Long
Short-Term Memory neural networks to forecast mining accident probabilities using time-
series data; natural language processing techniques to assess community opposition based
on social media content; and graph neural networks to analyze the dynamic interactions
within stakeholder networks. Empirical studies demonstrate that such applications have

been successfully implemented across a range of mining-related risk domains (Park et al.,

2019; Amin & Gholami, 2022; Wulandari et al., 2023).

Moreover, Al- and ML-based solutions enable a shift from reactive risk control to
proactive, preventive risk management supported by real-time decision-making (Doshi
Velez & Kim, 2017). This transition enables mining companies not only to monitor risks
but also to implement adaptive, data-driven management decisions aligned with long-term
sustainability objectives. Nevertheless, the practical deployment of these approaches
continues to face technical and organizational challenges, including limitations in data
quality, issues of model interpretability, and the need to integrate domain-specific

knowledge into data-driven frameworks (Zhang et al., 2021).

Accordingly, the objective of this study is to systematically identify the key risks faced by
the metal mining sector across four main dimensions: environmental, social, economic, and
technological, and to comparatively examine traditional risk assessment methods alongside
contemporary Al and ML-based approaches. The study aims to develop the foundations
of an integrated architecture and modeling framework that enables data-centric and
proactive evaluation of mining risks. In addition, drawing on international industry practices
such as those observed at BHP, Rio Tinto, and CODELCO, the research explores the
potential for designing next-generation risk management solutions. The findings are
intended to contribute not only to academic discourse but also to practical implementation
by providing a strategic basis for adopting Al in mining, thereby supporting safer

operations, enhanced sustainability, and stronger social acceptance.

2. Literature Review

The metal mining sector plays a strategically important role in supporting global economic
growth and technological advancement; however, its operations remain highly exposed to a
broad spectrum of environmental, economic, social, and technological risks. In recent
years, international studies have emphasized that, in addition to traditional environmental

and economic risks, new forms of risk have emerged, including those related to climate
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change, social license to operate, information security, and increasing levels of automation.
These risks are becoming increasingly interconnected and complex, thereby amplifying
their potential impacts on mining operations (World Bank, 2020; IEA, 2021; Zhang et
al., 2021). For instance, tailings dam failures, water scarcity, and community opposition
observed at major mining sites worldwide have been shown to result in operational
shutdowns, delayed investment flows, and significant reputational damage, as documented
by Kemp et al. (2011) and Owen et al. (2020). Consequently, there is a growing need
to reassess conventional approaches to risk assessment and management in the mining

industry.

Traditional methods used in mining risk assessment, such as Failure Modes and Effects
Analysis (FMEA), PESTLE analysis, risk matrices, and Monte Carlo simulation, have
been widely applied and are primarily based on linear frameworks that combine expert
judgment with assessments of risk likelihood and impact (Tah & Carr, 2001; Neves et
al., 2016). Despite their practical usefulness, these approaches have been increasingly
criticized for their limited ability to capture the dynamic behavior of complex, multivariate

systems and for their heavy reliance on subjective expert evaluations (Pons & Bikfalvi,

2020; Silva et al., 2020).

In recent years, mining operations have increasingly taken place in highly complex
environments characterized by large volumes of data and strongly interdependent factors.
This evolution has created a growing demand for new methodological approaches capable
of supporting real-time monitoring, synthetic modeling of risk scenarios, and the explicit
representation of intersystem dependencies (Wulandari et al., 2023). Under such
conditions, traditional approaches are widely regarded as insufficient, leading to a growing
consensus to integrate data-driven methodologies based on machine learning (ML) and
artificial intelligence (Al) into mining risk research and practice (Bhuiyan et al., 2021).
These contemporary approaches not only enable more accurate, faster, and more cost-
effective risk assessment but also lay the foundation for real-time forecasting and multi-
scenario decision-making grounded in continuously updated data. As a result, they
represent a key driver in shifting mining risk management from a predominantly reactive
orientation toward a proactive, data-centric, and systematically modeled framework. Al
and ML models are particularly well-suited to extracting patterns from large-scale
datasets, simultaneously modeling multivariate relationships, generating time-series
forecasts, and supporting real-time decision-making (Zhang et al., 2021; Chen et al.,
2021). For example, supervised learning methods such as Random Forest and Gradient

Boosting have been applied to quantify financial and operational risks in mining with high
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precision; Long Short-Term Memory networks have been used to forecast accident
probabilities using temporal data; and natural language processing techniques have enabled
the analysis of community sentiment and social risk, demonstrating both theoretical and

practical effectiveness (Wulandari et al., 2023).

Within the domain of environmental risk, Park et al. (2019) demonstrated that the
stability of tailings dams in Australian mining operations could be monitored using loT
sensors combined with real time Al analysis, allowing potential dam failures to be
predicted up to 72 hours in advance with an accuracy of approximately 85 percent,
compared with 65 to 70 percent achieved by traditional methods (Zhang et al., 2022).
Similarly, Chen et al. (2021) reported that real-time monitoring of water pollution in the
Canadian province of Alberta, based on IoT sensors and Random Forest algorithms,
resulted in a 40 percent reduction in contamination levels. In the context of land
degradation, computer vision techniques based on convolutional neural networks have been
shown to deliver remediation-related insights up to five times faster than conventional

biological restoration approaches (Laurence, 2011).

From the perspective of economic risk, Lee et al. (2022) demonstrate that price volatility
in copper and lithium markets can be forecast with 15 to 25 percent higher accuracy using
Gradient Boosting and LSTM models compared with traditional ARIMA approaches,
with copper price forecasting errors remaining below 8 percent during the period from
2020 to 2022. According to Rio Tinto (2023), mining operations that have implemented
Al and ML systems achieved a 30 percent reduction in maintenance costs and a 25
percent decrease in unplanned downtime, while the World Bank (2023) highlights the
effective use of ML-based models to assess exchange rate volatility and rising financing

costs.

In the domain of social risk, Garcia et al. (2023) report that, in the case of Chile’s
Codelco, natural language processing techniques were used to analyze community
sentiment, enabling the early identification of approximately 80 percent of negative
perceptions up to 30 days in advance and contributing to a 35 percent improvement in
the social license to operate. Similarly, BHP (2021) employed computer vision systems
based on the YOLOv5 architecture to monitor worker movements, resulting in a 50
percent reduction in occupational accidents. With respect to technological risk, Fortescue
Metals Group (2023) reported that integrating IoT and ML enabled the detection of
equipment failures with approximately 90 percent accuracy, resulting in cost savings of

approximately 1.2 million Australian dollars. In addition, Deloitte (2022) reports that the
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application of blockchain technology in mining operations reduced data inconsistencies by

up to 60 percent.

Overall, compared with traditional risk assessment methods, Al and ML-based
approaches have been shown to deliver substantially higher accuracy, faster processing, and
greater economic efficiency. Empirical evidence indicates that these models can improve
the precision of risk assessment by 15-30% and reduce decision-making timelines from 7-
14 days to 5-10 minutes, which is particularly critical in the time-sensitive context of
mining operations. Moreover, studies suggest that the adoption of Al and ML can reduce

direct costs associated with maintenance, environmental monitoring, and occupational

safety by 30-50% (Zhang et al., 2022; Rio Tinto, 2023).

These findings indicate that Al and ML approaches are not only practical tools for risk
management but also key enablers of data-driven, preventive, and real-time monitoring
frameworks supported by dynamic, multi-scenario modeling. Current research trends
suggest that further progress in this field will require deeper emphasis on explainable

artificial intelligence, stronger integration of domain-specific knowledge, and more rigorous

assurance of data quality and reliability (EY, 2023; Whulandari et al., 2023).

Table 1. Impact of ML and Al on risk management in mining companies

Category Advantages Impact Example
Operational Predicts Reduced Rio Tinto reduced
efficiency maintenance equipment failures | maintenance costs by 15
requirements in and lower percent through an Al-
advance downtime based maintenance system.
Safety Detects Prevention of Newmont Goldcorp applies
management environmental risks, | accidents and Al to monitor risks in
gas leaks, and protection of underground mining
ground instability human life operations
Optimized Improves ore Reduced waste, TOMRA'’s Al-based ore
resource classification and lower water and sorting system reduced water
utilization detection accuracy energy and energy use by 30
consumption percent
Human Automates repetitive | Enables workforce | The introduction of Al-
resource and physically transition toward based autonomous haulage
management demanding tasks higher skill roles systems resulted in the
reduction of approximately
1,000 positions
Data-driven ML models Optimized Al systems are vulnerable to
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decision- generate forecasts production cyberattacks, which may
making based on multiple planning and lead to operational
parameters reduced risk disruptions
exposure

Source. Haar, |., & Manotas Rodrnguez, E. C. (2025, March 31). AI—A game-

changer for the mining industry.

3. Comparison of mining risks and assessment methodologies
3.1. Mining risks and emerging trends

The mining industry plays a vital role in economic development; however, it remains
highly exposed to a broad range of environmental, social, financial, and technological risks.
A defining characteristic of this sector is that mineral extraction and processing activities
require substantial capital investment, are long-term in nature, and are typically conducted
in environmentally sensitive settings. As a result, the identification, classification, and
management of risks are critical issues not only for individual mining companies but also
for resource-dependent economies in which mining is a dominant sector.

Mining-related risks can be systematically classified into several major categories, as
identified in international research. Economic risks primarily arise from volatility in global
commodity prices, disruptions in investment flows, and weaknesses in supply chains, all of
which directly affect the financial stability of the mining sector (Humphreys, 2019).
Environmental risks include tailings and wastewater management, land degradation, and
biodiversity loss, with environmental impacts increasingly translating into regulatory

constraints that can limit or delay mining operations (ICMM, 2023).

Social risks are closely linked to local community interests, resettlement processes, and
challenges related to the social license to operate. Inadequate stakeholder engagement and
community relations can result in operational disruptions and project delays (OECD,
2022). Technical and technological risks encompass equipment failures, information
security vulnerabilities, and uncertainties related to investments in innovation. Although the
adoption of artificial intelligence and automation has expanded in recent years, research
highlights a parallel rise in exposure to cyber threats and data breaches (EY, 2023). In
addition, regulatory and political risks manifest through legal and institutional instability,
sudden changes in tax policy, and trends toward resource nationalism, all of which may

adversely affect the foreign investment climate and the long-term viability of mining

projects (World Bank, 2021).
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According to Ermst & Young’s (2024) report, Top 10 Risks and Opportunities for
Mining and Metals Companies, the sector reached a point in 2025 at which strategic
realignment and structural transformation are required to respond effectively to the growing
demands of the energy transition. Investment efficiency and financial discipline are
identified as leading risk factors, prompting companies to place greater emphasis on
diversified financing sources and strategic partnerships. Environmental management is
increasingly reframed through an ESG lens, with heightened attention to waste
management, water-use efficiency, biodiversity protection, and the inclusion of Indigenous
communities. At the same time, rising challenges related to resource scarcity and the
implementation of new projects are intensifying pressures associated with higher extraction

costs, exploration uncertainty, and labor shortages.

Figure 1. The top 10 risks and opportunities facing mining and metallurgical companies in

2025
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In addition, climate change impacts, rapid technological change, and the ongoing need to
improve productivity continue to shape the mining industry's risk landscape. Consequently,
mining companies are seeking to renew their strategies through innovation, recycling, and
value-chain integration to balance sustainable growth, societal expectations, and

environmental responsibility.

Since 2004, the discovery of large-scale new copper deposits worldwide has declined
sharply, signaling a strategically significant risk for the mining industry. At the same time,
global demand for copper has continued to rise, driven by the energy transition and the

rapid expansion of green technologies. However, the marked reduction in the identification
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of new large deposits poses a serious challenge to ensuring the long-term stability of

copper supply.

This adverse trend is associated with several underlying factors. Despite increasing
exploration budgets, the rate of successful discoveries has not kept pace, thereby reducing
the expected returns on investment. In addition, declining average copper grades in ore
bodies have contributed to higher extraction costs, greater technical complexity, and
increased environmental impacts, all of which strain operational efficiency. Geopolitical
instability, licensing constraints, and uncertainty in legal and regulatory frameworks further
hinder the development of new deposits, slowing project timelines and elevating overall

investment risk.

According to the 2024 Mining Risk Review published by Willis Towers Watson
(WTW), the copper sector remains highly exposed to a broad range of risks that extend
beyond demand and supply dynamics to include environmental, geopolitical, labor, and
governance-related factors. While strong demand for copper continues to be supported by
the growth of electric vehicles, renewable energy, and energy infrastructure, this expansion
simultaneously creates market opportunities and heightens exposure to price volatility. In
addition, the average lead time from the discovery of a copper deposit to the
commencement of production is estimated at approximately 15.7 years, which significantly
increases long-term investment uncertainty and amplifies the effects of demand and price
fluctuations. Climate change-related events, such as flooding, droughts, and other natural
hazards, further challenge the structural stability of mining operations and the effective
management of water resources. Accordingly, meeting future demand in the copper sector
will require prioritizing technological innovation, digital solutions, and data-driven
exploration methods, alongside policy and investment initiatives to establish a stable

political and regulatory environment (Ernst & Young, 2024).

3.2. Comparison of mining risk assessment methodologies

Risk assessment methodologies can generally be classified into two broad categories:
traditional approaches and modern approaches. Traditional methods, including Failure
Modes and Effects Analysis (FMEA), Monte Carlo simulation, and PESTLE analysis,
are relatively easy to apply, intuitive, and readily adaptable to sector-specific conditions.
These approaches enable practitioners to evaluate risk types, impacts, and frequencies
qualitatively and to draw conclusions based on predefined assumptions and scenarios.

However, they are characterized by several limitations, including a firm reliance on
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subjective judgment, limited applicability in dynamic environments, and an insufficient
capacity to incorporate quantitative data and real-time changes into the assessment

process.

In contrast, modern approaches based on machine learning (ML) and artificial intelligence
(Al) offer advanced analytical capabilities, including large scale data driven analysis, multi
scenario modeling, risk forecasting, and support for real time decision making. ML and Al
methods enable automated classification, pattern detection, and the dynamic modeling of
causal relationships based on data. Consequently, the combined and context appropriate
application of these approaches provides a robust foundation for optimizing risk
management practices in the mining sector. Recent studies have placed particular emphasis
on comparing the performance and effectiveness of traditional and modern risk assessment
methods in metal mining. While conventional techniques such as FMEA and Monte
Carlo simulation have long served as baseline tools for decision making within standard
frameworks, Al and ML based models have demonstrated significantly higher accuracy,
typically in the range of 85 to 95 percent, faster response times, with decisions generated

within 5 to 10 minutes, and improved cost efficiency (Zhang et al., 2022; Chen et al.,
2023).

In terms of predictive accuracy, traditional approaches generally achieve accuracy levels of
approximately 65 to 75 percent, whereas ML and Al models consistently reach 85 to 95
percent, representing a substantial improvement. This advantage stems from the ability of
ML algorithms to capture complex and dynamic interdependencies among multiple
variables, with supervised learning methods such as Random Forest and XGBoost being
widely applied in mining practice. From a time, efficiency perspective, conventional risk
assessments often require 7 to 14 days to produce conclusions, while ML and Al based
systems can deliver data driven decisions within minutes by leveraging real time sensor
integration and automated classification algorithms (Chen et al., 2023). Cost efficiency
further differentiates these approaches. Traditional methods are typically limited to
assessment functions and offer relatively modest direct cost reductions, whereas Al and
ML applications, through proactive forecasting, intelligent systems, and automated
maintenance planning, have been shown to reduce operational costs by approximately 30
to 40 percent, as highlighted in Rio Tinto’s 2023 sustainability report (Rio Tinto,
2023).

Accordingly, both academic research and industry practice indicate that strategically

integrating ML and Al approaches with traditional risk assessment methodologies
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represents a more effective and efficient strategy for mining risk evaluation. The
classification of artificial intelligence methodologies further clarifies foundational concepts
within the field and provides a structured framework for understanding applications,
theoretical foundations, computational techniques, and decision-making mechanisms. Such
classifications support the systematic organization of Al technologies in terms of internal
structure, developmental stages, and application domains. Based on theoretical foundations,
application characteristics, and technological architecture, Al can be broadly grouped into
four major categories: machine learning, artificial neural networks, multi agent systems, and
nature inspired artificial intelligence. These categories differ not only in theoretical
orientation but also in practical application, data processing requirements, decision

dynamics, and data scale and structure.

Artificial neural network (ANN) models, in particular, have been widely applied in
international research to optimize mining risk assessment and operational sustainability. For
example, Kang et al. (2020) employed ANN models to predict subsidence risks in
abandoned mines, achieving accuracy levels of 90 percent in coal mines and 100 percent
in other mining types, thereby demonstrating the effectiveness of ANN in modeling
multivariate and spatially dependent risks. Similarly, Dziadosz and Rejment (2017)
combined ANN and FMEA approaches to assess transportation risks in Polish copper
ore mines, estimating risk levels across operational stages (loading, crushing, and
conveying) and highlighting the advantages of ANN-based hierarchical modeling for
optimized decision support. In addition, Liu et al. (2022) developed a performance
scoring model using backpropagation neural networks to evaluate sustainable development
levels in coal mining, based on 17 indicators. They concluded that the ANN-based
approach achieved higher accuracy and greater adaptability to dynamic conditions than

traditional risk assessment methods.

4. Results

This study evaluates several key risk dimensions faced by mining companies, including
copper price forecasting as a form of market risk, excessive silica content in the flotation
process as a technological risk, and accident frequency as an occupational safety risk.
These risks are assessed using machine learning and deep learning approaches. The

analysis is structured as follows:
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4.1. Copper price forecasting using machine learning methods

Forecasting copper prices is critically important for mining companies in order to hedge
against financial risk, optimize investment planning, and maintain extraction costs at
sustainable levels. Because market price volatility directly affects profitability, accurate
copper price forecasting is central to strategic planning and risk management in the mining

sector.

In this study, copper prices were forecast through December 2030 using a combination of
traditional statistical models (ARIMA, SARIMA, and SARIMAX), machine learning
techniques (XGBoost, Gaussian Process Regression, and Linear Regression), and deep
learning models (LSTM, GRU, and BiLSTM). The analysis is based on the World
Bank’s commodity price dataset covering the period from January 1960 to December

2024.

Figure 2. Copper price modeling results using machine learning, deep learning, and
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Evaluation results indicate that ML and deep learning models, particularly GRU,
BiLSTM, and XGBoost, achieve the lowest prediction errors, with MAE values ranging
from 0.24 to 0.6 percent and RMSE values between 153 and 165, thereby providing the
most accurate representation of copper price dynamics (RI = 0.93—0.98). In contrast,
traditional models such as ARIMA and SARIMA tend to underestimate price levels and
exhibit relatively higher errors, with MAE values in the range of 220-235, indicating

comparatively weaker predictive performance.
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Table 2. Comparison of model performance in copper price forecasting

Copper price Traditional Statistical Machine Learning Deep Learning Model
(USD/metric Models averagi
ton) ARIM | SARI | SARI | LR | GP | XGBo | LST | GR | BiLS ng

A MA | MAX eg R ost M U ™

2025M | 8991 | —032 | —048 | —0.65 -1 | —=0. | —1.08 | —2. | =2. | -26 -1.37
1

19 | 98 37 | 53 9
205M | 9331 | 310 | 293 | 276 | 22 | 24 | 231 | 104 08 @ 071 | 2.04
2 ) 7
205M | 9740 | 7.03 | 685 | 668 | 63 65 644 | 518 | 501 484 | 610
3 36
205M | 9177 | 057 | 040 | 024  —0. 01 002 @ —11 | -1 @ —148 -0.29
4 03 8 7 | 32
MAE (%) | 285 | 275 | 263 19 215 225 | 185 17 | 170 | 2.2
0 8
RMSE 2354 | 2201 | 2108 | 180 | 195 | 2006 | 165. 158 & 1533 | 1911
5 2 0o | 7
RI 091 | 092 | 093 09 09 094 097 09 098 095
6 5 8

Source. Author’s calculations

Finally, forecasts through December 2030 were generated using the lowest error models,
namely LSTM, GRU, and BiLSTM. Based on the average projections of these three
models (LSTM = 10,675, GRU = 10,690, and BiLSTM = 10,705), the estimated
copper price for 2030 is approximately USD 10,690 per metric ton. This figure is very
close to the average of copper price forecasts for 2030 reported by major international
institutions, which stands at USD 10,821 per metric ton (Goldman Sachs: 13,000;
BloombergNEF: 12,000; CRU Group: 10,750; World Bank: 9,000; McKinsey &
Company: 12,000; Citigroup: 12,000; Capital Economics: 7,000), indicating strong
consistency between the model-based projections and established global outlooks.

4.2. Application of machine learning models in the ore beneficiation flotation
process

In mineral processing plants, weak control of technological processes under highly variable
operating conditions often leads to instability in product quality, representing a significant
production risk in the mining industry. In particular, elevated silica content in the flotation
process adversely affects the quality of the final concentrate, reduces export value, and
increases the risk of failing to meet contractual specifications. The objective of this study is
to predict silica content in the flotation process of an ore beneficiation plant using machine
learning methods. This approach enables early detection of technological deviations,
reduces variability in quality, and supports risk-based decision-making in process control.
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The analysis is based on 737,453 hourly observations from the flotation process of a
mineral processing plant. The dataset includes 24 variables, such as ore feed
characteristics, reagent flow rates, air flow, pulp level, pulp pH, and density. The data
were cleaned and transformed into numerical form prior to modeling. In addition, variable
engineering techniques were applied to better capture the relationships between process
inputs and outputs, yielding more than 10 new features in the form of interaction terms,
ratios, and squared variables. These transformations were designed to uncover nonlinear
and complex relationships among processes while reducing the risk of overfitting. The
target variable is the silica content in the concentrate, which represents a key indicator of

product quality.

The results indicate that silica content in the flotation product (% silica concentrate) is
strongly associated with both iron concentrate content (% iron concentrate) and silica feed
levels (% silica feed). The interaction between these two variables has a direct and
significant effect on the final product's silica concentration. Specifically, higher iron
concentrate content is associated with lower silica levels, whereas increases in silica feed

tend to raise the silica content of the concentrate.

Figure 3. Interaction between iron concentrate content and silica feed
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The results indicate that, when evaluated using cross-validation and test datasets, the
Random Forest model achieved the highest predictive accuracy, with RMSE = 0.0541,
MAE = 0.0144, and RI = 0.9976. In contrast, the Linear Regression model (RI =
0.6914) and the Gradient Boosting model (RI = 0.7864) captured the general trend and

certain nonlinear relationships, but their overall predictive accuracy remained insufficient.
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Figure 4. Learning curves and prediction interval estimates of the Random Forest model
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The steadily declining RMSE values observed in both the training and validation phases
of the Random Forest model indicate that overfitting is absent. In addition, the fact that
most predicted values fall within the 95 percent confidence interval demonstrates the
reliability and robustness of the model’s predictions. Accordingly, the Random Forest
model effectively captures the complex relationships among the multiple variables involved
in the flotation process and can be efficiently applied under real industrial operating
conditions.

4.3. Machine learning based assessment of mining accident risk

The mining industry is widely recognized as a high-risk environment for occupational
safety and health, with frequent accidents and injuries. In this study, machine learning
models were developed using 188,440 officially recorded accident cases from the U.S.
Mine Safety and Health Administration (MSHA) database, covering the period from
January 1, 2000, to December 31, 2024. The dataset includes 57 variables capturing
accident causes, accident types, timing, and worker experience. Based on these data, the
analysis examines classification accuracy, incident frequency patterns, and the potential for

generating forward-looking risk predictions.!!

The analysis was conducted using Python libraries including Pandas, Matplotlib,
Seaborn, Scikit-learn, and Imbalanced-learn. These tools were applied to data cleaning,
exploratory analysis, visualization, class balancing using SMOTE, and the development of
machine learning classification models. Random Forest classifiers were constructed to
predict accident type, occupation, nature of injury, and injured body part. Class imbalance
was addressed through SMOTE by oversampling minority classes. Model performance

I https://arlweb.msha.gov/opengovernmentdata
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was evaluated using classification reports, with precision, recall, and F1-score as key
metrics.

The analysis of mining accident data indicates that overexertion (16.2 percent) and being
struck by moving objects (15.4 percent) are the most prevalent accident types,
highlighting the need for improved management of physical workload and equipment
safety. A large proportion of accidents occurred among maintenance and repair workers
(24.9 percent), reflecting occupation-specific risk exposure. Musculoskeletal injuries
involving muscles, tendons, and the spine were most common (31.7 percent), consistent
with the physically demanding nature of mining work, while finger and hand injuries were
also frequent (20.7 percent). Accidents related to material handling accounted for a
substantial share (31.3 percent), indicating deficiencies in work organization and safety
practices. Notably, 42.5 percent of injured workers had between zero and three years of
experience, underscoring the importance of training quality and induction programs. In
addition, a high concentration of accidents occurred at the start of shifts beginning around
07:00 (35.8 percent), suggesting elevated risk due to reduced alertness during early
working hours. Injuries resulting in lost workdays accounted for 32.4 percent of cases,
underscoring the severity of accident outcomes and reinforcing the need for stronger
preventive safety policies.

Figure 5. Accident history of mining companies recorded by MSHA
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The comparative evaluation of the classification models indicates that across five
classification tasks, the models achieved average F1 scores ranging from 0.88 to 0.89,
suggesting consistently strong overall performance. In particular, classification models for
accident type (ACCIDENT TYPE), occupation (OCCUPATION), and nature of
injury (NATURE INJURY) achieved the highest precision, recall, and F1 scores,

indicating that these variables effectively capture key characteristics, causes, and
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consequences of mining accidents. Models predicting injury degree codes
(DEGREE INJURY CD) and injured body parts (IN]J BODY PART) also
achieved high accuracy (0.89) and exhibited the most stable performance, with relatively
uniform results across all classes. The macro- and weighted-average precision and recall
values, which ranged between 0.88 and 0.90, further confirm that the models provide
balanced and reliable classification across most categories. Overall, the strong performance
of all models demonstrates that machine learning methods are practical tools for assessing
risk levels, identifying patterns, and supporting preventive decision-making using accident
data.

Table 3. Comparison of classification model performance (percent)

Category Accuracy | Macro | Macro | Weighted | Weighted average
average | average | average (F1 score)

(F1

score)
Cause of the accident | 0.88 0.88 0.88 0.88 0.88
Occupation 0.87 0.88 0.88 0.87 0.87
Nature of injury 0.89 0.89 0.89 0.89 0.89
Injured body part 0.89 0.88 0.88 0.89 0.89
Degree of injury code | 0.89 0.90 0.90 0.89 0.89

The machine-learning-based forecasts developed for potential mining accidents during the
period from 1 to 7 January 2025 indicate that overall risk levels remain high. The most
likely accident type during this period is overexertion-related, with an estimated probability
of 82.3%. In addition, accidents involving falls, mechanical entrapment, and exposure to
chemical substances also exhibit relatively high probabilities. In terms of occupation,
workers engaged in physically demanding roles, such as maintenance personnel, mechanics,
and equipment operators, are identified as the most vulnerable groups, with associated risk

probabilities ranging between 76 and 79 percent.

Among the injuries, musculoskeletal strains and tears affecting muscles, tendons, and
spinal structures, as well as cuts, puncture wounds, fractures, contusions, and burns,
predominate. These injuries are most likely to occur in vulnerable body parts, including
the back, fingers, knees, shoulders, and eyes, with estimated probabilities ranging from 76
to 81 percent. The time window with the highest accident risk is between 06:00 and
07:00 in the moming, corresponding to the start of the work shift. This finding suggests
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that insufficient physical and psychological readiness at the beginning of the workday may
elevate safety risks, highlighting the need for heightened attention to occupational safety
during this period. Accordingly, this one-week forward-looking forecast provides a valuable
data-driven basis for guiding occupational safety policies by accounting for dominant
accident types, injury characteristics, workplace conditions, and occupation-specific risk

profiles.

Table 4. Forecast of scenarios with the highest probability of mining accidents

Date Injury severity Accident type Occupation Injury type
Jan 1 Restricted duty Overexertion (82.3%) | Maintenance Strain, tear,
only (78.5%) worker, mechanic, | disc injury

technical service (76.4%)
staff (79.1%)

Jan 2 | No lost Struck by a flying or Helper, general Cuts,
workdays, no falling object (77.6%) | laborer (74.5%) | wounds,
restrictions penetrating
(75.8%) injuries

(79.3%)

Jan 3 | Lost workdays Fall against an object | Roof bolter Fractures,
with restrictions (81.4%) installer, drill crush injuries
(80.2%) operator (75.9%)

(76.8%)
Jan 4 | Restricted duty Caught in or between | Shuttle car and Bruising,
only (77.9%) moving and fixed personnel severe
objects (79.2%) transport vehicle | internal
operator impact
(78.3%) without skin
break
(80.1%)

Jan 5 | No lost Striking a fixed object | Electrician, line Burns
workdays, no (78.8%) worker (75.6%) | (chemical
restrictions exposure)
(76.5%) (77.2%)

Jan 6 | Lost workdays Fall from machinery Front loader and | Fractures,
only (79.3%) (80.1%) scraper operator crush injuries

(77.9%) (78.5%)

Jan 7 | Lost workdays Exposure to radiation, | Dryer and Burns
with restrictions corrosive, or toxic furnace operator (thermal)
(78.1%) substances (79.5%) (76.2%) (77.8%)

Source: Author’s calculations
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Conclusion

This study represents an original contribution that comparatively evaluates the performance
of traditional risk assessment methods and modern artificial intelligence and machine
learning based approaches across three major risk dimensions faced by the metal mining
sector, namely environmental, economic, and technological risks, using real-world data.

The main findings can be summarized as follows.

First, with respect to economic risk, copper price forecasts were conducted through 2030
using monthly data from 1960 to 2024, comprising 780 observations. The results indicate
that Al-based models such as GRU, BiLSTM, and XGBoost achieved high explanatory
power, with R-squared values ranging from 0.93 to 0.98, outperforming traditional
ARIMA and SARIMA models by 15-25% in accuracy. The close alignment between
forecast copper prices and projections from major international institutions further reinforces
the practical applicability and reliability of Al-based modeling for strategic decision-

making in the mining sector.

Second, in the context of technological risk, the prediction of silica content in the flotation
process was performed using more than 700,000 hourly observations from a mineral
processing plant. The Random Forest model demonstrated exceptional predictive
performance, with an RMSE of 0.0541, an MAE of 0.0144, and an R-squared value of
0.9976. These results highlight the strong potential of ML and Al applications to reduce
quality variability, enhance process control, and improve operational stability in mineral

processing operations.

Third, for occupational safety risk assessment, classification-based machine learning models
were developed using more than 188,000 recorded accident cases from the United States
mining sector spanning 24 years. The models successfully predicted accident types,
causes, and risk conditions, with F1 scores ranging from 0.88 to 0.90. The findings
reveal that maintenance personnel, early-morning working hours, and less-experienced
workers constitute the highest-risk groups, underscoring the need for targeted training

programs and improved human resource policies to prevent accidents.

Opverall, the results provide robust empirical evidence that the practical application of Al
and ML models offers a strategic pathway to transform mining risk management from a
predominantly reactive approach to a proactive, data-driven, and real-time decision-making

framework. The findings demonstrate that Al and ML-based methodologies possess
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strong potential to support anticipatory risk control, enhance operational resilience, and

improve sustainability outcomes in the mining industry.

Looking ahead, the successful integration of Al and ML models into mining risk
management requires their deployment in real operating environments, strategic integration
with traditional assessment methods, and further development of explainable Al
mechanisms such as SHAP and LIME. In addition, aligning ESG indicators with
predictive models, strengthening workforce capabilities, improving data quality, and
investing in digital infrastructure remain critical priorities. Practical applications such as
predicting tailings dam failures using LSTM models combined with IoT sensors,
interpreting model decisions through SHAP-based explanations, enhancing social license
to operate via NLP-driven sentiment analysis, and monitoring environmental impacts in
real time using CNN-based systems further illustrate the tangible benefits of Al and ML
adoption. Experiences from leading companies such as BHP and Rio Tinto also highlight
the importance of workforce training, standardized data governance, and system
development aligned with ISO 31050 to ensure the successful and sustainable

implementation of these advanced risk management solutions.
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